Journal of Atmospheric Chemistry

, Volume 58, Issue 2, pp 131–149 | Cite as

Detection of nitric acid (HNO3) in the atmosphere using the LOPAP technique

  • Jörg Kleffmann
  • Traian Gavriloaiei
  • Yasin Elshorbany
  • Milagros Ródenas
  • Peter Wiesen


A new instrument (LOPAP: LOng Path liquid Absorption Photometer) for the sensitive detection of nitric acid (HNO3) in the atmosphere is described. HNO3 is sampled in a temperature controlled stripping coil mounted in an external sampling module to minimize sampling artefacts in sampling lines. After conversion into a strongly absorbing dye, HNO3 is detected in long path absorption in special Teflon® AF 2400 tubes used as liquid core wave guides. For the correction of some interferences, due to for example HONO and particle nitrate, two channels are used in series. The interferences from several potential interfering compounds including particle nitrate were quantified in the laboratory and in a large outdoor simulation chamber. With the exception of the interference caused by N2O5, which is quantitatively measured by the instrument, all tested interferences can be corrected under atmospheric conditions. Thus, in the instrument only the sum of N(V) from HNO3 and N2O5 is determined, which is expected to be a common problem of wet chemical HNO3 instruments. The instrument has a detection limit of 5–30 pptv for a time response of 6–2 min, respectively and was validated against the FTIR technique in a large outdoor simulation chamber. In addition, the applicability of the instrument was demonstrated in a field campaign.


Nitrogen oxides In-situ instrument Interferences Field measurement 



The financial support by the German Environment Foundation (Deutsche Bundesstiftung Umwelt - DBU), Contract no. 19142, the European Commission within the EUROCHAMP project, Contract no. RII3-CT-2004-505968, and the continuous technical support by QUMA Elektronik & Analytik GmbH, Wuppertal, Germany during the development of the HNO3 instrument is gratefully acknowledged. In addition, the authors are indebted to Dr. Klaus Wirtz and Dr. M. Martin Reviejo, Centro de Estudios Ambientales del Mediterraneo (CEAM), for providing the simulation chamber data. DuPont is gratefully acknowledged for the license agreement for the scientific use of the Teflon® AF.


  1. Acker, K., Spindler, G., Brüggemann, E.: Nitrous and nitric acid measurements during the INTERCOMP2000 campaign in Melpitz. Atmos. Environ. 38, 6497–6505 (2004)CrossRefGoogle Scholar
  2. Appel, B.R., Wall, S.M., Tokiwa, Y., Haik, M.: Simultaneous nitric acid, particulate nitrate and acidity measurements in ambient air. Atmos. Environ. 14, 549–554 (1980)CrossRefGoogle Scholar
  3. Appel, B.R., Tokiwa, Y., Haik, M.: Sampling of nitrates in ambient air. Atmos. Environ. 15, 283–289 (1981)CrossRefGoogle Scholar
  4. Appel, B.R., Povard, V., Kothny, E.L.: Loss of nitric acid within inlet devices intended to exclude coarse particles during atmospheric sampling. Atmos. Environ. 22, 2535–2540 (1988)CrossRefGoogle Scholar
  5. Arnold, F., Hauck, G.: Lower stratospheric trace gas detection using aircraft-borne active chemical ionisation mass spectroscopy. Nature 315, 307–309 (1985)CrossRefGoogle Scholar
  6. Bai, H., Lu, C., Chang, K.-F., Fang, G.-C.: Sources of sampling errors for field measurements of nitric acid gas by a Denuder system. Atmos. Environ. 37, 941–947 (2003)CrossRefGoogle Scholar
  7. Ballenthin, J.O., Thorn, W.F., Miller, T.M., Viggiano, A.A., Hunton, D.E., Koike, M., Kondo, Y., Takegawa, N., Irie, H., Ikeda, H.: In situ HNO3 and NOy instrument comparison during SOLVE, J. Geophys. Res. 108, 4188, DOI  10.1029/2002JD002136 (2003)
  8. Becker, K.H.: In: The European Photoreactor EUPHORE; Final Report of the EC-Project EUPHORE, Contract EV5V-CT92-0059 (1996)Google Scholar
  9. Brown, S.S., Stark, H., Ciciora, S.J., McLaughlin, R.J., Ravishankara, A.R.: Simultaneous in situ detection of NO3 and N2O5 via cavity ring-down spectroscopy. Rev. Sci. Instrum. 73, 3291–3301 (2002)CrossRefGoogle Scholar
  10. Brown, S.S., Stark, H., Ravishankara, A.R.: Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5. J. Geophys. Res. 108, 4539, DOI  10.1029/2003JD003407 (2003)CrossRefGoogle Scholar
  11. Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A.: Chemical mechanisms of acid generation in the troposphere. Nature 317, 27–35, (1985)CrossRefGoogle Scholar
  12. Day, D.A., Wooldridge, P.J., Dillon, M.B., Thornton, J.A., Cohen, R.C.: A thermal dissociation laser-induced fluorescence instrument for the in situ detection of NO2, peroxy nitrates, alkyl nitrates, and HNO3. J. Geophys. Res. 107, 10.1029/2001JD000779 (2002)Google Scholar
  13. DeMore, W.P., Sander, S.P., Golden, D.M., Hampson, R.F., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., Molina, M.J.: Chemical kinetics and photochemical data for use in stratospheric modeling. JPL Publication 97-4, Pasadena, California (1997)Google Scholar
  14. Fahey, D.W., Eubank, C.S., Hübler, G., Fehsenfeld, F.C.: Evaluation of a catalytic reduction technique for the measurement of total odd-nitrogen NOy in the atmosphere. J. Atmos. Chem. 3, 435–468 (1985)CrossRefGoogle Scholar
  15. Febo, A., Perrino, C., Cortiello, M.: A Denuder technique for the measurement of nitrous acid in urban atmospheres. Atmos. Environ. 27A, 1721–1728 (1993)Google Scholar
  16. Ferm, M., Samuelsson, U., Sjödin, A., Grennfelt, P.: Long range transport of gaseous and particulate oxidized nitrogen compounds. Atmos. Environ. 18, 1731–1735 (1984)CrossRefGoogle Scholar
  17. Finlayson-Pitts, B.J., Pitts J.N. Jr.: Chemistry of the upper and lower atmosphere. Academic, New York (2000)Google Scholar
  18. Flaud, J.-M., Brizzi, G., Carlotti, M., Perrin, A., Ridolfi, M.: MIPAS database: Validation of HNO3 line parameters using MIPAS satellite measurements. Atmos. Chem. Phys. 6, 5037–5048 (2006)Google Scholar
  19. Genfa, Z., Slanina, S., Boring, C.B., Jongejan, P.A.C., Dasgupta, K.: Continuous wet denuder measurements of atmospheric nitric and nitrous acid during the 1999 Atlanta supersite. Atmos. Environ. 37, 1351–1364 (2003)CrossRefGoogle Scholar
  20. Goldan, P.D., Kuster, W.C., Albritton, D.L., Fehsenfeld, F.C., Connell, P.S., Norton, R.B.: Calibration and tests of the filter-collection methode for measuring clean-air, ambient levels of nitric acid. Atmos. Environ. 17, 1355–1364 (1983)CrossRefGoogle Scholar
  21. Grasshoff, K., Ehrhardt, M., Kremling, K.: Methods of seawater analysis, 2nd ed., pp. 139–147. Verlag Chemie, Weinheim (1983)Google Scholar
  22. Hallquist, M., Stewart, D.J., Baker, J., Cox, R.A.: Hydrolysis of N2O5 on submicron sulfuric acid aerosols. J. Phys. Chem. 104, 3984–3990 (2000)Google Scholar
  23. Hanke, M., Umann, B., Uecker, J., Arnold, F., Bunz, H.: Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionisation mass spectroscopy during the MINATROC Field Campaign 2000 on Monte Cimone. Atmos. Chem. Phys. 3, 417–436 (2003)CrossRefGoogle Scholar
  24. Heland, J., Kleffmann, J., Kurtenbach, R., Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ. Sci. Technol. 35, 3207–3212 (2001)CrossRefGoogle Scholar
  25. Huang, G., Zhou, X., Deng, G., Qiao, H., Civerolo, K.: Measurements of atmospheric nitrous acid and nitric acid. Atmos. Environ. 36, 2225–2235 (2002)CrossRefGoogle Scholar
  26. Jacob, D.J.: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131–2159 (2000)CrossRefGoogle Scholar
  27. Johnston, H.S.: Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173, 517–522 (1971)CrossRefGoogle Scholar
  28. Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J.C., Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ. Sci. Pollut. Res. 9(special issue 4), 48–54 (2002)Google Scholar
  29. Kleffmann, J., Benter, T., Wiesen, P.: Heterogeneous reaction of nitric acid with nitric oxide on glass surfaces under simulated atmospheric conditions. J. Phys. Chem. A 108, 5793–5799 (2004)CrossRefGoogle Scholar
  30. Kleffmann, J., Lörzer, J.C., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Rodenas, M., Wirtz, K.: Intercomparisons of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO) in the atmosphere. Atmos. Environ. 40, 3640–3652 (2006)CrossRefGoogle Scholar
  31. Li-Jones, X., Savoie, D.L., Prospero, J.M.: HNO3 losses within the cyclone inlet of a diffusion-denuder under simulated marine environments. Atmos. Environ. 35, 985–993 (2001)CrossRefGoogle Scholar
  32. Neuman, J.A., Huey, J.G., Ryerson, T.B., Fahey, D.W.: Study of inlet materials for sampling atmospheric nitric acid. Environ. Sci. Technol. 33, 1133–1136 (1999)CrossRefGoogle Scholar
  33. Neuman, J.A., Gao, R.S., Schein, M.E., Ciciora, S.J., Holecek, J.C., Thompson, T.L., Winkler, R.H., McLaughlin, R.J., Northway, M.J., Richard, E.C., Fahey, D.W.: A fast-response chemical ionization mass spectrometer for in situ measurement of HNO3 in the upper troposphere and lower stratosphere. Rev. Sci. Instrum. 71, 3886–3894 (2000)CrossRefGoogle Scholar
  34. Nydahl, F.: On the optimum conditions for the reduction of nitrate to nitrite by cadmium. Talanta 23, 349–357 (1976)CrossRefGoogle Scholar
  35. Oms, M.T., Jongejan, P.A.C., Veltkamp, A.C., Wyers, G.P., Slanina, J.: Continuous monitoring of atmospheric HCl, HNO3 and SO2 by wet-annular denuder air sampling with on-line chromatographic analysis. Int. J. Environ. Anal. Chem. 62, 207–218 (1996)CrossRefGoogle Scholar
  36. Park, J.-Y., Lee, Y.-N.: Solubility and decomposition kinetics of nitrous acid in aqueous solution. J. Phys. Chem. 92, 6294–6302 (1988)CrossRefGoogle Scholar
  37. Sanhueza, E., Plum, C.N., Pitts J.N. Jr.: Positive interference of nitrous acid in the determination of gaseous HNO3 by the NOx chemiluminescence-nylon cartridge method: applications to measurements of ppb levels of HONO in air. Atmos. Environ. 18, 1029–1031 (1984)CrossRefGoogle Scholar
  38. Schütze, M., Herrmann, H.: Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops. Chem. Phys. Phys. Chem. 4, 60–67 (2002)CrossRefGoogle Scholar
  39. Seinfeld, J.H., Pandis, S.N.: Atmospheric chemistry and Physics. Wiley, New York (1998)Google Scholar
  40. Simon, P.K., Dasgupta, P.K.: Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate. Environ. Sci. Technol. 29, 1534–1541 (1995)CrossRefGoogle Scholar
  41. Večeřa, Z., Dasgupta, P.K.: Measurement of atmospheric nitric and nitrous acid with a wet effluent diffusion denuder and low-pressure ion chromatography-postcolumn reaction detection. Anal. Chem. 63, 2210–2216 (1991)CrossRefGoogle Scholar
  42. Wennberg, P.O., Cohen, R.C., Stimpfle, R.M., Koplow, J.P., Anderson, J.G., Salawitch, R.J., Fahey, D.W., Woodbridge, E.L., Keim, E.R., Gao, R.S., Webster, C.R., May, R.D., Toohey, D.W., Avallone, L.M., Proffitt, M.H., Loewenstein, M.J., Podolske, R., Chan, K.R., Wofsy, S.C.: Removal of stratospheric O3 by radicals: in situ measurements of OH, HO2, NO, NO2, ClO, and BrO. Science 266, 398–404 (1994)CrossRefGoogle Scholar
  43. Wirtz, K.: Private communication, Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM) (2004)Google Scholar
  44. Wood, E.C., Wooldridge, P.J., Freese, J.H., Albrecht, T., Cohen, R.C.: Prototype for in situ detection of atmospheric NO3 and N2O5 via laser-induced fluorescence. Environ. Sci. Technol. 37(24), 5732–5738, DOI  10.1021/es034507w (2003)CrossRefGoogle Scholar
  45. Wood, S.W., Batchelor, R.L., Godman, A., Rinsland, C.P., Connor, B.J., Murcray, F.J., Stephen, T.M., Heuff, D.N.: Bround-based nitric acid measurements at arrival heights, Antarctica, using solar and lunar fourier transform infrared observations. J. Geophys. Res. 109, D18307, DOI  10.1029/2004JD004665 (2004)CrossRefGoogle Scholar
  46. Yamamoto, M., Tamaki, M., Bandow, H., Meada, Y.: HNO3 analyser and the NO–ozone chemiluminescence methode. Atmos. Environ. 35, 5339–5346 (2001)CrossRefGoogle Scholar
  47. Yao, W., Byrne, R.H., Waterbury, R.D.: Determination of nanomolar concentrations of nitrite and nitrate in natural waters using long path length absorbance spectroscopy. Environ. Sci. Technol. 32, 2646–2649 (1998)CrossRefGoogle Scholar
  48. Zellweger, C., Ammann, M., Hofer, P., Baltensperger, U.: NOy Speciation with a combined wet effluent diffusion denuder–aerosol collector coupled to ion chromatography. Atmos. Environ. 33, 1131–1140 (1999)CrossRefGoogle Scholar
  49. Zhang, J.-Z., Ortner, P.B., Fischer, J.: Determination of nitrate and nitrite in estuarine and coastal waters by gas segmented continuous flow colorimetric analysis. EPA Method 353.4, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268 (1997)Google Scholar
  50. Zondlo, M.A., Mauldin, R.L., Kosciuch, E., Cantrell, C.A., Eisele, F.L.: Development and characterization of an airborne-based instrument used to measure nitric acid during the NASA Transport and Chemical Evolution over the Pacific field experiment, J. Geophys. Res. 108, 8793, DOI  10.1029/2002JD003234 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jörg Kleffmann
    • 1
  • Traian Gavriloaiei
    • 1
  • Yasin Elshorbany
    • 1
  • Milagros Ródenas
    • 2
  • Peter Wiesen
    • 1
  1. 1.Physikalische Chemie/FB CBergische Universität WuppertalWuppertalGermany
  2. 2.Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM)PaternaSpain

Personalised recommendations