Skip to main content
Log in

Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Levels of fine Particulate Matter (PMfine), SO2 and NOx are interlinked through atmospheric reactions to a large extent. NOx, NH3, SO2, temperature and humidity are the important atmospheric constituents/conditions governing formation of fine particulate sulfates and nitrates. To understand the formation of inorganic secondary particles (nitrates and sulfates) in the atmosphere, a study was undertaken in Kanpur, India. Specifically, the study was designed to measure the atmospheric levels of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} ,\;{\text{Ca}}^{{{\text{2 + }}}} ,\;{\text{Mg}}^{{2 + }} ,\;{\text{Na}}^{{\text{ + }}} ,\;{\text{K}}^{{\text{ + }}} ,\;{\text{NO}}^{{\text{ - }}}_{{\text{3}}} ,\;{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} ,\;{\text{CI}}^{{\text{ - }}} ,\;{\text{NH}}_{{\text{3}}} \;{\left( {{\text{gas}}} \right)},\;{\text{HNO}}_{{\text{3}}} \;{\left( {{\text{gas}}} \right)},\;{\text{NO}}_{2} \;{\text{and}}\;{\text{PM}}_{{{\text{10}}}} \;{\left( {{{\text{PM}}_{{2.5}} } \mathord{\left/ {\vphantom {{{\text{PM}}_{{2.5}} } {{\text{PM}}_{{{\text{10}}}} \;{\text{ratio}}}}} \right. \kern-\nulldelimiterspace} {{\text{PM}}_{{{\text{10}}}} \;{\text{ratio}}} = 0.74} \right)} \) covering winter and summer seasons and day and night samplings to capture the diurnal variations. Results showed \( {\text{NO}}^{{\text{ - }}}_{{\text{3}}} ,\;{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} ,\;{\text{NH}}^{{\text{ + }}}_{{\text{4}}} ,\;{\text{K}}^{ + } \) are found to be significantly high in winter season compared to the summer season. In winter, the molar ratio of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) to \( {\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} \) was found to be greater than 2:1. This higher molar ratio suggests that in addition to (NH4)2SO4, NH4NO3 will be formed because of excess quantity of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) present. In summer, the molar ratio was less than 2:1 indicating deficit of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) to produce NH4NO3. The nitrogen conversion ratio (NO2 to NO3) was found to be nearly 50% in the study area that suggested quick conversion of NO2 into nitric acid. As an overall conclusion, this study finds that NH3 plays a vital role in the formation of fine inorganic secondary particles particularly so in winter months and there is a need to identify and assess sources of ammonia emissions in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, P.J., Seinfeld, J.H., Koch, D.M.: Global concentration of tropospheric sulfate, nitrate and ammonium aerosol simulated in a general circulation model. J. Geophys. Res. 104, 13791–13823 (1999)

    Article  Google Scholar 

  • Alastuey, A., Querol, X., Rodríguez, S., Plana, F., Lopez-Soler, A., Ruiz, C., Mantilla, E.: Monitoring of atmospheric particulate matter around sources of inorganic secondary inorganic aerosol. Atmos. Environ. 38, 4979–4992 (2004)

    Article  Google Scholar 

  • Appel, B.R., Tokiwa, Y., Haik, M.: Sampling of nitrates in ambient air. Atmos. Environ. 15, 283–289 (1981)

    Article  Google Scholar 

  • Ayers, G.P.: Some practical aspects of acid deposition measurements. Presentation to the 3rd expert meeting on acid deposition monitoring network in East Asia, 14–16 November 1995, pp. 1–20. Niigata Prefecture, Japan (1995)

    Google Scholar 

  • Baek, B.H., Aneja, V.P.: Observation based analysis for the determination of equilibrium time constant between ammonia, acid gases, and fine particles. International J. ENviron. Pollut. 23(3), 239–247 (2005)

    Google Scholar 

  • Bartonova, A., Sharma M.: Indoor and ambient air exposure of PAHs and fine particulate to women and children: ealth impacts in terms of morbidity, Norwegian institute for air research , Kjeller Norway, ISBN:82-45-1679-0. (2005)

  • Cadle, S.H.: Seasonal variations in nitric acid, nitrate, strong aerosol acidity, and ammonia in an urban area. Atmos. Environ. 19, 181–188 (1985)

    Article  Google Scholar 

  • Chang, Y.S., Carmichael, G.R., Kurita, H., Ueda, H.: An investigation of the formation of ambient NH4NO3 aerosol. Atmos. Environ. 20(10), 1969–1977 (1986)

    Article  Google Scholar 

  • CPCB.: Air Quality Status and Trends in India, CPCB Publication NAAQMS/14/1999–2000 (2001)

  • Foltescu, V.L., Lindgren, E.S., Isakson, J., Oblad, M., Pacyna, J.M.: Gas to particle conversion of sulphur and nitrogen compounds as studied at marine station in Northern Europe. Atmos. Environ. 18, 3129–3140 (1996)

    Article  Google Scholar 

  • Gupta, A., Kumar, R., Kumari, K.M., Srivastava, S.S.: Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos. Environ. 37, 4837–4846 (2003)

    Article  Google Scholar 

  • Harrison, R.M., Kitto, A.M.N.: Estimation of the rate constant for the reaction of acid sulfate aerosol with NH3 gas from atmospheric measurements. J. Atmo. Chem. 15, 133–143 (1992)

    Article  Google Scholar 

  • Hoek, G., Mennen, M.G., Allen, G.A., Hofschreuder, P., Meulen, T.V.D.: Concentrations of acidic air pollutants in The Netherlands. Atmos. Environ. 30, 3141–3150 (1996)

    Article  Google Scholar 

  • Kadowaki, S.: Size distribution and chemical composition of atmospheric particulate nitrate in the Nagoya area. Atmos. Environ. 11, 671–675 (1977)

    Article  Google Scholar 

  • Kadowaki, S.: On the nature of the atmospheric oxidation processes of SO2 to sulfate and of NO2 to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban Area. Environ. Sci. Technol. 20, 1249–1253 (1986)

    Article  Google Scholar 

  • Kaneyasu, N., Ohta, S., Murao, N.: Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmos. Environ. 29, 1559–1568 (1995)

    Article  Google Scholar 

  • Khoder, M.I.: Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49, 675–684 (2002)

    Article  Google Scholar 

  • Kleinman, M.T., Tomezyk, C., Leaderer, B.P., Tanner, R.L.: Inorganic nitrogen compounds in New York City. Ann. NY. Acad. Sci. 322, 115–123 (1979)

    Article  Google Scholar 

  • Kumar, R., Gupta, A., Kumari, K.M., Srivastava, S.S.: Simultaneous measurements of SO2, NO2, HNO3, and NH3: seasonal and spatial variations. Curr. Sci. 87, 1108–1115 (2004)

    Google Scholar 

  • Lodge, J.P.: Methods of air sampling and analysis. Lewis (1989)

  • Matsumoto, K., Tanaka, H.: Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium. Atmos. Environ. 30, 639–648 (1996)

    Article  Google Scholar 

  • Mészáros, E., Horváth, L.: Concentration and dry deposition of atmospheric sulfur and nitrogen compounds in Hungary. Atmos. Environ. 18, 1725–1730 (1984)

    Article  Google Scholar 

  • Moya, M., Grutter, M., Báez, A.: Diurnal variability of size-differentiated inorganic aerosols and their gas-phase precursors during January and February of 2003 near downtown Mexico City. Atmos. Environ. 38, 5651–5661 (2004)

    Article  Google Scholar 

  • NILU, January 1995, EMEP/CCC- Reports

  • Parmar, R.S., Satsangi, G.S., Kumari, M., Lakhani, A., Srivastava, S.S., Prakash, S.: Study of size distribution of atmospheric aerosol at Agra. Atmos. Environ. 35, 693–702 (2001)

    Article  Google Scholar 

  • Penner, J.E.: Carbonaceous aerosol influencing atmospheric radiation: black carbon and organic carbon. In: Charlson, R.J., Heintzenberg, J. (eds.) Aerosol Forcing of Climate, pp. 91–108. Wiely, England (1995)

    Google Scholar 

  • Pervez, S., Pandey, G.S.: Rate evaluation of marble damage by SO2-acidity in the vicinity of stacks. Environ. Geochem. Health 14(4), 103–106 (1992)

    Article  Google Scholar 

  • Schwartz, J., Dockery D.W., Neas, L.M.: Is daily mortality associated specifically with fine particles? JAPCA 46, 927–939 (1996)

    Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley-Interscience, New York (1998)

    Google Scholar 

  • Sharma, M., Maloo, S.: Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos. Environ. 39 6015–6026 (2005)

    Article  Google Scholar 

  • Sharma, M., McBean, E.A., Ghosh, U.: Prediction of atmospheric sulfate deposition at sensitive receptors in Northern India. Atmos. Environ. 29(16), 2157–2162 (1995)

    Article  Google Scholar 

  • Sharma, M., Kumar, V.N., Katiyar, S.K., Sharma, R., Shukla, B.P., Sengupta, B.: Effect of particulate air pollution on the respiratory health of subject who live in three areas in Kanpur, India. Arch. Environ. Health 59(7), 348–358 (2004)

    Article  Google Scholar 

  • Shukla S.P.: Investigations into neutralization of atmospheric acidity through characterization of rainwater and particulate matter, PhD synopsis, Department of Civil Engineering. IIT Kanpur, India (2007)

    Google Scholar 

  • Stelson, A.W., Seinfeld, J.H.: Relative humidity and pH dependence of the vapor pressure of ammonium nitrate-nitric acid solutions at 25°C. Atmos. Environ. 16, 993–1000 (1982)

    Article  Google Scholar 

  • Stockwell, W.R., Calvert, J.G.: The mechanism of the HO–SO2 reaction. Atmos. Environ. 17, 2231–2235 (1983)

    Article  Google Scholar 

  • Stokes A.: Uptake and translocation of griseofulvin by wheat seedlings. J. Plant Soil. 5(2), (1954) February

  • Sutton, M.A., Pitcairn, C.E.R., Fowler D.: The exchange of ammonia between the atmosphere and plant communities. Adv. Ecol. Res. 24, 301–393 (1993)

    Article  Google Scholar 

  • Tare V, Tripathi SN, Chinnam N, Srivastava AK, Dey S, Agarwal A., Kishore S, Lal R.B., Manar M, Kanwade V.P., Chauhan S.S.S., Sharma M., Reddy R.R., Gopal K.R., Narasimhulu K., Reddy L.S.S., Gupta S., Lal S.: Measurements of atmospheric parameters during Indian space research organization geosphere biosphere program land campaign II at a typical location in the Ganga Basin: 2. Chemical properties J. Geophys. Res.-Atmospheres 111 (D23): Art. No. D23210 DEC 14 2006 (2006)

  • USEPA: Review of the National Ambient Air Quality Standards fot Particulate Matter EPA-452\R-96-013 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711 (1996)

  • Utsunomiya, A., Wakamatsu, S.: Temperature and humidity dependence on aerosol composition in the northern Kyushu, Japan. Atmos. Environ. 30, 2379–2386 (1996)

    Article  Google Scholar 

  • Wall, S.M., John, W., Ondo, J.L.: Measurment of aerosol size distribution for nitrate and major ionic species. Atmos. Environ. 22, 1649–1656 (1988)

    Article  Google Scholar 

  • Willison, M.J., Clarke, A.G., Zeki, E.M.: Seasonal variation in atmospheric aerosol concentration and composition at urban and rural sites in northern England. Atmos. Environ. 19, 1081–1089 (1985)

    Article  Google Scholar 

  • Zhuang, H., Chank, K., Chan, M.F., Anthony, S.W.: Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong.Atmos. Environ. 33, 843–853 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M., Kishore, S., Tripathi, S.N. et al. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. J Atmos Chem 58, 1–17 (2007). https://doi.org/10.1007/s10874-007-9074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-007-9074-x

Keywords

Navigation