Advertisement

Journal of Atmospheric Chemistry

, Volume 58, Issue 1, pp 1–17 | Cite as

Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India

  • Mukesh Sharma
  • Shyam Kishore
  • S. N. Tripathi
  • S. N. Behera
Article

Abstract

Levels of fine Particulate Matter (PMfine), SO2 and NOx are interlinked through atmospheric reactions to a large extent. NOx, NH3, SO2, temperature and humidity are the important atmospheric constituents/conditions governing formation of fine particulate sulfates and nitrates. To understand the formation of inorganic secondary particles (nitrates and sulfates) in the atmosphere, a study was undertaken in Kanpur, India. Specifically, the study was designed to measure the atmospheric levels of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} ,\;{\text{Ca}}^{{{\text{2 + }}}} ,\;{\text{Mg}}^{{2 + }} ,\;{\text{Na}}^{{\text{ + }}} ,\;{\text{K}}^{{\text{ + }}} ,\;{\text{NO}}^{{\text{ - }}}_{{\text{3}}} ,\;{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} ,\;{\text{CI}}^{{\text{ - }}} ,\;{\text{NH}}_{{\text{3}}} \;{\left( {{\text{gas}}} \right)},\;{\text{HNO}}_{{\text{3}}} \;{\left( {{\text{gas}}} \right)},\;{\text{NO}}_{2} \;{\text{and}}\;{\text{PM}}_{{{\text{10}}}} \;{\left( {{{\text{PM}}_{{2.5}} } \mathord{\left/ {\vphantom {{{\text{PM}}_{{2.5}} } {{\text{PM}}_{{{\text{10}}}} \;{\text{ratio}}}}} \right. \kern-\nulldelimiterspace} {{\text{PM}}_{{{\text{10}}}} \;{\text{ratio}}} = 0.74} \right)} \) covering winter and summer seasons and day and night samplings to capture the diurnal variations. Results showed \( {\text{NO}}^{{\text{ - }}}_{{\text{3}}} ,\;{\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} ,\;{\text{NH}}^{{\text{ + }}}_{{\text{4}}} ,\;{\text{K}}^{ + } \) are found to be significantly high in winter season compared to the summer season. In winter, the molar ratio of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) to \( {\text{SO}}^{{{\text{2 - }}}}_{{\text{4}}} \) was found to be greater than 2:1. This higher molar ratio suggests that in addition to (NH4)2SO4, NH4NO3 will be formed because of excess quantity of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) present. In summer, the molar ratio was less than 2:1 indicating deficit of \( {\text{NH}}^{{\text{ + }}}_{{\text{4}}} \) to produce NH4NO3. The nitrogen conversion ratio (NO2 to NO3) was found to be nearly 50% in the study area that suggested quick conversion of NO2 into nitric acid. As an overall conclusion, this study finds that NH3 plays a vital role in the formation of fine inorganic secondary particles particularly so in winter months and there is a need to identify and assess sources of ammonia emissions in India.

Keywords

Inorganic secondary particles Ammonia Sulfate Nitrate Water soluble ions India 

References

  1. Adams, P.J., Seinfeld, J.H., Koch, D.M.: Global concentration of tropospheric sulfate, nitrate and ammonium aerosol simulated in a general circulation model. J. Geophys. Res. 104, 13791–13823 (1999)CrossRefGoogle Scholar
  2. Alastuey, A., Querol, X., Rodríguez, S., Plana, F., Lopez-Soler, A., Ruiz, C., Mantilla, E.: Monitoring of atmospheric particulate matter around sources of inorganic secondary inorganic aerosol. Atmos. Environ. 38, 4979–4992 (2004)CrossRefGoogle Scholar
  3. Appel, B.R., Tokiwa, Y., Haik, M.: Sampling of nitrates in ambient air. Atmos. Environ. 15, 283–289 (1981)CrossRefGoogle Scholar
  4. Ayers, G.P.: Some practical aspects of acid deposition measurements. Presentation to the 3rd expert meeting on acid deposition monitoring network in East Asia, 14–16 November 1995, pp. 1–20. Niigata Prefecture, Japan (1995)Google Scholar
  5. Baek, B.H., Aneja, V.P.: Observation based analysis for the determination of equilibrium time constant between ammonia, acid gases, and fine particles. International J. ENviron. Pollut. 23(3), 239–247 (2005)Google Scholar
  6. Bartonova, A., Sharma M.: Indoor and ambient air exposure of PAHs and fine particulate to women and children: ealth impacts in terms of morbidity, Norwegian institute for air research , Kjeller Norway, ISBN:82-45-1679-0. (2005)Google Scholar
  7. Cadle, S.H.: Seasonal variations in nitric acid, nitrate, strong aerosol acidity, and ammonia in an urban area. Atmos. Environ. 19, 181–188 (1985)CrossRefGoogle Scholar
  8. Chang, Y.S., Carmichael, G.R., Kurita, H., Ueda, H.: An investigation of the formation of ambient NH4NO3 aerosol. Atmos. Environ. 20(10), 1969–1977 (1986)CrossRefGoogle Scholar
  9. CPCB.: Air Quality Status and Trends in India, CPCB Publication NAAQMS/14/1999–2000 (2001)Google Scholar
  10. Foltescu, V.L., Lindgren, E.S., Isakson, J., Oblad, M., Pacyna, J.M.: Gas to particle conversion of sulphur and nitrogen compounds as studied at marine station in Northern Europe. Atmos. Environ. 18, 3129–3140 (1996)CrossRefGoogle Scholar
  11. Gupta, A., Kumar, R., Kumari, K.M., Srivastava, S.S.: Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos. Environ. 37, 4837–4846 (2003)CrossRefGoogle Scholar
  12. Harrison, R.M., Kitto, A.M.N.: Estimation of the rate constant for the reaction of acid sulfate aerosol with NH3 gas from atmospheric measurements. J. Atmo. Chem. 15, 133–143 (1992)CrossRefGoogle Scholar
  13. Hoek, G., Mennen, M.G., Allen, G.A., Hofschreuder, P., Meulen, T.V.D.: Concentrations of acidic air pollutants in The Netherlands. Atmos. Environ. 30, 3141–3150 (1996)CrossRefGoogle Scholar
  14. Kadowaki, S.: Size distribution and chemical composition of atmospheric particulate nitrate in the Nagoya area. Atmos. Environ. 11, 671–675 (1977)CrossRefGoogle Scholar
  15. Kadowaki, S.: On the nature of the atmospheric oxidation processes of SO2 to sulfate and of NO2 to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban Area. Environ. Sci. Technol. 20, 1249–1253 (1986)CrossRefGoogle Scholar
  16. Kaneyasu, N., Ohta, S., Murao, N.: Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmos. Environ. 29, 1559–1568 (1995)CrossRefGoogle Scholar
  17. Khoder, M.I.: Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49, 675–684 (2002)CrossRefGoogle Scholar
  18. Kleinman, M.T., Tomezyk, C., Leaderer, B.P., Tanner, R.L.: Inorganic nitrogen compounds in New York City. Ann. NY. Acad. Sci. 322, 115–123 (1979)CrossRefGoogle Scholar
  19. Kumar, R., Gupta, A., Kumari, K.M., Srivastava, S.S.: Simultaneous measurements of SO2, NO2, HNO3, and NH3: seasonal and spatial variations. Curr. Sci. 87, 1108–1115 (2004)Google Scholar
  20. Lodge, J.P.: Methods of air sampling and analysis. Lewis (1989)Google Scholar
  21. Matsumoto, K., Tanaka, H.: Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium. Atmos. Environ. 30, 639–648 (1996)CrossRefGoogle Scholar
  22. Mészáros, E., Horváth, L.: Concentration and dry deposition of atmospheric sulfur and nitrogen compounds in Hungary. Atmos. Environ. 18, 1725–1730 (1984)CrossRefGoogle Scholar
  23. Moya, M., Grutter, M., Báez, A.: Diurnal variability of size-differentiated inorganic aerosols and their gas-phase precursors during January and February of 2003 near downtown Mexico City. Atmos. Environ. 38, 5651–5661 (2004)CrossRefGoogle Scholar
  24. NILU, January 1995, EMEP/CCC- ReportsGoogle Scholar
  25. Parmar, R.S., Satsangi, G.S., Kumari, M., Lakhani, A., Srivastava, S.S., Prakash, S.: Study of size distribution of atmospheric aerosol at Agra. Atmos. Environ. 35, 693–702 (2001)CrossRefGoogle Scholar
  26. Penner, J.E.: Carbonaceous aerosol influencing atmospheric radiation: black carbon and organic carbon. In: Charlson, R.J., Heintzenberg, J. (eds.) Aerosol Forcing of Climate, pp. 91–108. Wiely, England (1995)Google Scholar
  27. Pervez, S., Pandey, G.S.: Rate evaluation of marble damage by SO2-acidity in the vicinity of stacks. Environ. Geochem. Health 14(4), 103–106 (1992)CrossRefGoogle Scholar
  28. Schwartz, J., Dockery D.W., Neas, L.M.: Is daily mortality associated specifically with fine particles? JAPCA 46, 927–939 (1996)Google Scholar
  29. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley-Interscience, New York (1998)Google Scholar
  30. Sharma, M., Maloo, S.: Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos. Environ. 39 6015–6026 (2005)CrossRefGoogle Scholar
  31. Sharma, M., McBean, E.A., Ghosh, U.: Prediction of atmospheric sulfate deposition at sensitive receptors in Northern India. Atmos. Environ. 29(16), 2157–2162 (1995)CrossRefGoogle Scholar
  32. Sharma, M., Kumar, V.N., Katiyar, S.K., Sharma, R., Shukla, B.P., Sengupta, B.: Effect of particulate air pollution on the respiratory health of subject who live in three areas in Kanpur, India. Arch. Environ. Health 59(7), 348–358 (2004)CrossRefGoogle Scholar
  33. Shukla S.P.: Investigations into neutralization of atmospheric acidity through characterization of rainwater and particulate matter, PhD synopsis, Department of Civil Engineering. IIT Kanpur, India (2007)Google Scholar
  34. Stelson, A.W., Seinfeld, J.H.: Relative humidity and pH dependence of the vapor pressure of ammonium nitrate-nitric acid solutions at 25°C. Atmos. Environ. 16, 993–1000 (1982)CrossRefGoogle Scholar
  35. Stockwell, W.R., Calvert, J.G.: The mechanism of the HO–SO2 reaction. Atmos. Environ. 17, 2231–2235 (1983)CrossRefGoogle Scholar
  36. Stokes A.: Uptake and translocation of griseofulvin by wheat seedlings. J. Plant Soil. 5(2), (1954) FebruaryGoogle Scholar
  37. Sutton, M.A., Pitcairn, C.E.R., Fowler D.: The exchange of ammonia between the atmosphere and plant communities. Adv. Ecol. Res. 24, 301–393 (1993)CrossRefGoogle Scholar
  38. Tare V, Tripathi SN, Chinnam N, Srivastava AK, Dey S, Agarwal A., Kishore S, Lal R.B., Manar M, Kanwade V.P., Chauhan S.S.S., Sharma M., Reddy R.R., Gopal K.R., Narasimhulu K., Reddy L.S.S., Gupta S., Lal S.: Measurements of atmospheric parameters during Indian space research organization geosphere biosphere program land campaign II at a typical location in the Ganga Basin: 2. Chemical properties J. Geophys. Res.-Atmospheres 111 (D23): Art. No. D23210 DEC 14 2006 (2006)Google Scholar
  39. USEPA: Review of the National Ambient Air Quality Standards fot Particulate Matter EPA-452\R-96-013 U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC 27711 (1996)Google Scholar
  40. Utsunomiya, A., Wakamatsu, S.: Temperature and humidity dependence on aerosol composition in the northern Kyushu, Japan. Atmos. Environ. 30, 2379–2386 (1996)CrossRefGoogle Scholar
  41. Wall, S.M., John, W., Ondo, J.L.: Measurment of aerosol size distribution for nitrate and major ionic species. Atmos. Environ. 22, 1649–1656 (1988)CrossRefGoogle Scholar
  42. Willison, M.J., Clarke, A.G., Zeki, E.M.: Seasonal variation in atmospheric aerosol concentration and composition at urban and rural sites in northern England. Atmos. Environ. 19, 1081–1089 (1985)CrossRefGoogle Scholar
  43. Zhuang, H., Chank, K., Chan, M.F., Anthony, S.W.: Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong.Atmos. Environ. 33, 843–853 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Mukesh Sharma
    • 1
  • Shyam Kishore
    • 1
  • S. N. Tripathi
    • 1
  • S. N. Behera
    • 1
  1. 1.Department of Civil EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations