Journal of Atmospheric Chemistry

, Volume 57, Issue 3, pp 255–280 | Cite as

An ozone depletion event in the sub-arctic surface layer over Hudson Bay, Canada

  • B. A. Ridley
  • T. Zeng
  • Y. Wang
  • E. L. Atlas
  • E. V. Browell
  • P. G. Hess
  • J. J. Orlando
  • K. Chance
  • A. Richter
Article

Abstract

During the Tropospheric Ozone Production about the Spring Equinox (TOPSE) program, aircraft flights during April 7–11, 2000 revealed a large area air mass capped below ∼500 m altitude over Hudson Bay, Canada in which ozone was reduced from normal levels of 30–40 ppbv to as low as 0.5 ppbv. From some of the in-situ aircraft measurements, back-trajectory calculations, the tropospheric column of BrO derived from GOME satellite measurements, and results from a regional model, we conclude that the event did not originate from triggering of reactive halogen release in the sub-Arctic region of Hudson Bay but resulted from such an event occurring at higher latitudes over the islands of the northern Canada Archipelago and nearby Arctic Ocean with subsequent transport over a distance of 1,000–1,500 km to Hudson Bay. BrOx remained active during this transport despite considerable changes in the conditions of the underlying surface suggesting that chemical recycling during transport dominated any local halogen input from the surface. If all of the tropospheric column density of BrO is distributed uniformly within the surface layer, then the mixing ratio of BrO derived from the satellite measurements is at least a factor of 2–3 larger than derived indirectly from in situ aircraft measurements of the NO/NO2 ratio.

Keywords

Ozone Ozone depletion Bromine Hudson Bay Arctic TOPSE GOME 

References

  1. Arimoto, R., Zeng, T., Davis, D., Wang, Y., Khaing, H., Nesvit, C., Huey, G.: Concentrations and sources of aerosol ions and trace elements during ANTCI-2003. Atmos. Environ. (2007) doi:10.1016/j.atmosenv.2007.05.054
  2. Atlas, E.L., Ridley, B.A., Cantrell, C.A.: The Troposphere Ozone Production about the Spring Equinox (TOPSE) Experiment: introduction. J. Geophys. Res. 108(D4), 8353 (2003) doi:10.1029/2002JD003172 CrossRefGoogle Scholar
  3. Avallone, L.M., Toohey, D.W., Fortin, T.J., McKinney, K.A., Fuentes, J.: In situ measurements of bromine oxide at two high-latitude boundary layer sites: Implications of variability. J. Geophys. Res. 108(D3), 4089 (2003) doi:10.1029/2002JD002843 CrossRefGoogle Scholar
  4. Barrie, L., Platt, U.: Arctic tropospheric chemistry: an overview. Tellus 49B, 450–454 (1997)Google Scholar
  5. Barrie, L.A., Bottenheim, J.W., Schnell, R.C., Crutzen, P.J., Rasmussen, R.A.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141 (1988)CrossRefGoogle Scholar
  6. Barrie, L.A., Platt, U., Shepson, P.: Surface ozone depletion at polar sunrise fueled by sea-salt halogens. IGACtivities Newsletter, International Global Atmospheric Chemistry Project 14, pp. 4–7, September (1998)Google Scholar
  7. Beine, H.J., Dominé, F., Simpson, W., Honrath, R.E., Sparapani, R., Zhou, Z., King, M.: Snow-pile and chamber experiments during the Polar Sunrise Experiment ‘Alert 2000’: exploration of nitrogen chemistry. Atmos. Environ. 36, 2707–2719 (2002)CrossRefGoogle Scholar
  8. Blake, N.J., et al.: The seasonal evolution of NMHCs and light alkyl nitrates at middle to high latitudes during TOPSE. J. Geophys. Res. 108(D4), 8359 (2003) doi:10.1029/2001JD001467 CrossRefGoogle Scholar
  9. Bottenheim, J.W., Gallant, A.C., Brice, K.A.: Measurements of NOy species and O3 at 82°N latitude. Geophys. Res. Lett. 13, 113–116 (1986)Google Scholar
  10. Bottenheim, J.W., Fuentes, J.D., Tarasick, D.W., Anlauf, K.G.: Ozone in the Arctic lower troposphere during winter and spring 2000 (ALERT2000). Atmos. Environ. 36, 2535–2544 (2002)CrossRefGoogle Scholar
  11. Boudries, H., Bottenheim, J.W.: Cl and Br atom concentrations during a surface boundary layer ozone depletion event in the Canadian high Arctic. Geophys. Res. Lett. 27, 517–520 (2000)CrossRefGoogle Scholar
  12. Browell, E.V., et al.: Ozone, aerosol, potential vorticity, and trace gas trends observed at high-latitudes over North America from February to May 2000. J. Geophys. Res. 108(D4), 8369 (2003) doi:10.1029/2001JD001390 CrossRefGoogle Scholar
  13. Cantrell, C.A., Edwards, G.D., Stephens, S. Mauldin, L., Kosciuch, E., Zondlo, M., Eisele, F.: Peroxy radical observations using chemical ionization mass spectrometry during TOPSE. J. Geophys. Res. 108(D6), 8371 (2003) doi:10.1029/2002JD002715 CrossRefGoogle Scholar
  14. Curry, J.A., Radke, L.F.: Possible role of ice crystals in ozone destruction of the lower Arctic atmosphere. Atmos. Environ. 27A, 2873–2879 (1993)Google Scholar
  15. Domine, F., Taillandier, A.S., Simpson, W.R., Severin, K.: Specific surface area, density and microstructure of frost flowers. Geophys. Res. Lett. 32, L13502 (2005) doi:10.1029/2005GL023245 CrossRefGoogle Scholar
  16. Evans, M.J., et al.: Coupled evolution of BrOx–ClOx–HOx–NOx chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer. J. Geophys. Res. 108(D4), 8368 (2003) doi:10.1029/2002JD002732 CrossRefGoogle Scholar
  17. Fan, S.-M., Jacob, D.J.: Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols. Nature 359, 522–524 (1992)CrossRefGoogle Scholar
  18. Fitzenberger, R., Bösch, H., Camy-Peyret, C., Chipperfield, M.P., Harder, H., Platt, U., Sinnhuber, B.-M., Wagner, T., Pfeilsticker, K.: First profile measurements of tropospheric BrO. Geophys. Res. Lett. 27, 2921–2924 (2000)CrossRefGoogle Scholar
  19. Foster, K.L., Plastridge, R.A., Bottenheim, J.W., Shepson, P.B., Finlayson-Pitts, B.J., Spicer, C.W.: The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science 291, 471–474 (2001)CrossRefGoogle Scholar
  20. Frieß, U., Hollwedel, J., König-Langlo, G., Wagner, T., Platt, U.: Dynamics and chemistry of tropospheric bromine explosion events in the Antarctic coastal region. J. Geophys. Res. 109 (D6) D06305 (2004) doi:10.1029/2003JD00413 CrossRefGoogle Scholar
  21. Fuelberg, H.E., et al.: TRACE – a trajectory intercomparison. 2. Isentropic and kinematic methods. J. Geophys. Res. 101, 23927–23939 (1996)CrossRefGoogle Scholar
  22. Gauchard, P.-A., Ferrari, C.P., Dommergue, A., Poissant, L., Pilote, M., Guehenneux, G., Boutron, C.F., Baussand, P.: Atmospheric particle evolution during a nighttime atmospheric mercury depletion event in the sub-Arctic at Kuujjuarapik/Whapmagoostui, Quebec, Canada. Sci. Total Environ. 336, 215–224 (2005)CrossRefGoogle Scholar
  23. Hanson, D.R., Ravishankara, A.R.: Heterogeneous chemistry of bromine species in sulfuric acid under stratospheric conditions. Geophys. Res. Lett. 22, 385–388 (1995)CrossRefGoogle Scholar
  24. Hausmann, M., Platt, U.: Spectroscopic measurement of bromine oxide in the high Arctic during Polar Sunrise Experiment 1992. J. Geophys. Res. 99, 25399–25413 (1994)CrossRefGoogle Scholar
  25. Hönninger, G.: Halogen oxide studies in the boundary layer my multi-axis Differential Optical Absorption Spectroscopy and Active Longpath – DOAS, Ph. D., pp. 262. Thesis, University of Heidelberg, Germany (2002)Google Scholar
  26. Hönninger, G., Platt, U.: Observations of BrO and its vertical distribution during surface ozone depletion at Alert. Atmos. Environ. 36, 2481–2489 (2002)CrossRefGoogle Scholar
  27. Honrath, R.E., Peterson, M.C., Guo, S., Dibb, J.E., Shepson, P.B., Campbell, B.: Evidence of NOx production within or upon ice particles in the Greenland snowpack. Geophys. Res. Lett. 26, 695–698 (1999)CrossRefGoogle Scholar
  28. Jacobi, H.-W., Kaleschke, L., Richter, A., Rozanov, A., Burrows, J.P.: Observation of a fast ozone loss in the marginal ice zone of the Arctic Ocean. J. Geophys. Res. 111, D15309 (2006) doi:10.1029/2005JD006715 CrossRefGoogle Scholar
  29. Jobson, B.T., Niki, H., Yokouchi, Y., Bottenheim, J., Hopper, F., Leaitch, R.: Measurements of C2–C6 hydrocarbons during the 1992 Polar Sunrise Experiment: Evidence of Cl-atom and Br-atom chemistry. J. Geophys. Res. 99, 25355–25368 (1994)CrossRefGoogle Scholar
  30. Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A.M., Roscoe, H.K., Hollwedel, J., Wagner, T., Jacobi, H.-W.: Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophys. Res. Lett. 31, L16114 (2004) doi:10.1029/2004GL020655 CrossRefGoogle Scholar
  31. Kalnajs, L.E., Avallone, L.M.: Frost flower influence on springtime boundary-layer ozone depletion events and atmospheric bromine levels. Geophys. Res. Lett. 33, L10810 (2006) doi:10.1029/2006GL025809 CrossRefGoogle Scholar
  32. Leaitch, W.R., Barrie, L.A., Bottenheim, J.W., Li, S.M.: Airborne observations related to ozone depletion at polar sunrise. J. Geophys. Res. 99, 25499–25518 (1994)CrossRefGoogle Scholar
  33. Le Bras, G., Platt, U.: A possible mechanism for combined chlorine and bromine catalyzed destruction of tropospheric ozone in the Arctic. Geophys. Res. Lett. 22, 599–602 (1995)CrossRefGoogle Scholar
  34. McConnell, J.C., Henderson, G.S., Barrie, L.A., Bottenheim, J., Niki, H., Langford, C.H.: Templeton, E.M.: Photochemical bromine production implicated in Arctic boundary-layer ozone depletion. Nature 355, 150–152 (1992)CrossRefGoogle Scholar
  35. McElroy, C.T., McLinden, C.A., McConnell, J.C.: Evidence for bromine monoxide in the free troposphere during the Arctic Polar Sunrise. Nature 397, 338–341 (1999)CrossRefGoogle Scholar
  36. Michalowski, B.A., Francisco, J.S., Li, S.-M., Barrie, L.A., Bottenheim, J.W., Shepson, P.B.: A computer model study of multiphase chemistry in the Arctic boundary layer during polar sunrise. J. Geophys. Res. 105, 15131–15145 (2000)CrossRefGoogle Scholar
  37. Morin, S., Hönninger, G., Staebler, R.M., Bottenheim, J.W.: A high time resolution study of boundary layer ozone chemistry and dynamics over the Arctic Ocean near Alert, Nunavut. Geophys. Res. Lett. 32, L08809 (2005) doi:10.1029/2004GL022098 CrossRefGoogle Scholar
  38. Oltmans, S.J., Komhyr, W.D.: Surface ozone distributions and variations from 1973–1984 measurements at the NOAA Geophysical Monitoring for Climatic Change baseline observatories. J. Geophys. Res. 91, 5229–5236 (1986)CrossRefGoogle Scholar
  39. Platt, U., Janssen, C.: Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere. Faraday Disc. 100, 175–198 (1995)CrossRefGoogle Scholar
  40. Platt, U., Lehrer, E.: Arctic troposphere halogen chemistry. Final Report to the European Community, ARCTOC, EVSV-CT93-0318 (1997)Google Scholar
  41. Platt, U., Moortgat, G.K.: Heterogeneous and homogeneous chemistry of reactive halogen compounds in the lower troposphere. J. Atmos. Chem. 34, 1–8 (1999)CrossRefGoogle Scholar
  42. Ramacher, B., Rudolph, J., Koppmann, R.: Hydrocarbon measurements during tropospheric ozone depletion events: Evidence for halogen atom chemistry. J. Geophys. Res. 104, 3633–3653 (1999)CrossRefGoogle Scholar
  43. Rankin, A.M., Wolff, E.W., Martin, S.: Frost flowers – implications for tropospheric chemistry and ice core interpretation. J. Geophys. Res. 107 (D23), 4683 (2002) doi:10.1029/2002JD002492 CrossRefGoogle Scholar
  44. Richter, A., Wittrock, F., Eisinger, M., Burrows, J.P.: GOME observations of tropospheric BrO in Northern Hemisphere spring and summer 1997. Geophys. Res. Lett. 25, 2683–2686 (1998)CrossRefGoogle Scholar
  45. Ridley, B.A., Orlando, J.J.: Active nitrogen in surface ozone depletion events at Alert during spring 1998. J. Atmos. Chem. 44, 1–22 (2003)CrossRefGoogle Scholar
  46. Ridley, B.A., et al.: Ozone depletion events observed in the high latitude surface layer during the TOPSE aircraft program. J. Geophys. Res. 108(D4), 8356 (2003) doi:10.1029/2001JD001507 CrossRefGoogle Scholar
  47. Rudolph, J., Fu, B.R., Thompson, A., Anlauf, K., Bottenheim, J.: Halogen atom concentrations in the Arctic troposphere derived from hydrocarbon measurements: Impact on the budget of formaldehyde. Geophys. Res. Lett. 26, 2941–2944 (1999)CrossRefGoogle Scholar
  48. Sander, R., Burrows, J., Kaleschke, L.: Carbonate precipitation in brine – a potential trigger for tropospheric ozone depletion events. Atmos. Chem. Phys. 6, 4653–4658 (2006)Google Scholar
  49. Scheuer, E., Talbot, R.W., Dibb, J.E., Seid, G.K., DeBell, L., Lefer, B.: Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE. J. Geophys. Res. 108(D4), 8370 (2003) doi:10.1029/2001JD001364 CrossRefGoogle Scholar
  50. Simpson, W.R., Alvarez-Aviles, L., Douglas, T.A., Sturm, M., Domine, F.: Halogens in the coastal snow pack near Barrow, Alaska: evidence for active bromine air-snow chemistry during springtime. Geophys. Res. Lett. 32, L04811 (2005) doi:10.1029/2004GL021748 CrossRefGoogle Scholar
  51. Simpson, W.R., Carlson, D., Hoenninger, G., Douglas, T.A., Sturm, M., Perovich, D., Platt, U.: First-year sea-ice contact predicts bromine oxide (BrO) levels better than frost flower contact. Atmos. Chem. Phys. Discuss. 6, 11051–11066 (2006)CrossRefGoogle Scholar
  52. Spicer, C.W., Plastridge, R.A., Foster, K.L., Finlayson-Pitts, B.J., Bottenheim, J.W., Grannas, A.M., Shepson, P.B.: Molecular halogens before and during ozone depletion events in the Arctic at polar sunrise: concentration and sources. Atmos. Environ. 36, 2721–2731 (2002)CrossRefGoogle Scholar
  53. Sturges, W.T.: Halocarbons in the Arctic and Antarctic atmosphere. In: Niki, H., Becker, K. H. (eds.) The Tropospheric Chemistry in the Polar Regions. pp. 117–130, Springer-Verlag, New York (1993)Google Scholar
  54. Sumner, A.L., Shepson, P.B.: Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 398, 230–233 (1999)CrossRefGoogle Scholar
  55. Tang, T., McConnell, J.C.: Autocatalytic release of bromine from Arctic snow pack during polar sunrise. Geophys. Res. Lett. 23, 2633–2636 (1996)CrossRefGoogle Scholar
  56. Tie, X., et al.: Effect of sulfate aerosol on tropospheric NOx and ozone budgets: model simulations and TOPSE evidence. J. Geophys. Res. 108(D4), 8364 (2003) doi:10.1029/2001JD001508 CrossRefGoogle Scholar
  57. Tuckermann, M., Ackermann, R., Gölz, C., Lorenzen-Schmidt, H., Seine, T., Stutz, J., Trost, B., Unold, W., Platt, U.: DOAS – observation of halogen radical-catalysed Arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Ålesund, Spitsbergen. Tellus 49B, 533–555 (1997)Google Scholar
  58. Wagner, T., Platt, U.: Satellite mapping of enhanced BrO concentrations in the troposphere. Nature 395, 486–490 (1998)CrossRefGoogle Scholar
  59. Wagner, T., Leue, C., Wenig, M., Pfeilsticker, K., Platt, U.: Spatial and temporal distribution of enhanced boundary layer BrO concentrations measured by the GOME instrument aboard ERS-2. J. Geophys. Res. 106, 24225–24235 (2001)CrossRefGoogle Scholar
  60. Wang, X., Key, J.R.: Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate 18, 2558–2574 (2005)CrossRefGoogle Scholar
  61. Zeng, T., Wang, Y., Chance, K., Browell, E.V., Ridley, B.A., Atlas, E.L.: Widespread persistent near-surface ozone depletion at northern high latitudes in spring. Geophys. Res. Lett. 30(24), 2298 (2003) doi:10.1029/2003GL018587 CrossRefGoogle Scholar
  62. Zeng, T., Wang, Y., Chance, K., Blake, N., Blake, D., Ridley, B.: Halogen-driven low altitude O3 and hydrocarbon losses in spring at northern high latitudes. J. Geophys. Res. 111, D17313 (2006) doi:10.1029/2005JD006706 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • B. A. Ridley
    • 1
  • T. Zeng
    • 2
  • Y. Wang
    • 2
  • E. L. Atlas
    • 3
  • E. V. Browell
    • 4
  • P. G. Hess
    • 1
  • J. J. Orlando
    • 1
  • K. Chance
    • 5
  • A. Richter
    • 6
  1. 1.Atmospheric Chemistry DivisionNCARBoulderUSA
  2. 2.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  4. 4.Atmospheric SciencesNASA Langley Research CenterHamptonUSA
  5. 5.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  6. 6.Institute of Environmental PhysicsUniversity of BremenBremenGermany

Personalised recommendations