Journal of Atmospheric Chemistry

, Volume 56, Issue 2, pp 105–125 | Cite as

Satellite Measurements of Tropospheric Column O3 and NO2 in Eastern and Southeastern Asia: Comparison with a Global Model (MOZART-2)

  • X. TieEmail author
  • S. Chandra
  • J. R. Ziemke
  • C. Granier
  • G. P. Brasseur


Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia are analyzed to study the spatial and seasonal characteristics of pollution in these regions. Tropospheric column O3 is derived from differential measurements of total column ozone from Total Ozone Mapping Spectrometer (TOMS), and stratospheric column ozone from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS). The tropospheric column NO2 is measured by Global Ozone Monitoring Experiment (GOME). A global chemical and transport model (Model of Ozone and Related Chemical Tracers, version 2; MOZART-2) is applied to analyze and interpret the satellite measurements. The study, which is based on spring, summer, and fall months of 1997 shows generally good agreement between the model and satellite data with respect to seasonal and spatial characteristics of O3 and NO2 fields. The analysis of the model results show that the industrial emission of NOx (NO + NO2) contributes about 50%–80% to tropospheric column NO2 in eastern Asia and about 20%–50% in southeastern Asia. The contribution of industrial emission of NOx to tropospheric column O3 ranges from 10% to 30% in eastern Asia. Biomass burning and lightning NOx emissions have a small effect on tropospheric O3 in central and eastern Asia, but they have a significant impact in southeastern Asia. The varying effects of NOx on tropospheric column ozone are attributed to differences in relative abundance of volatile organic compounds (VOCs) with respect to total nitrogen in the two regions.

Key words

ozone and NO2 in Asia TOMS/MLS GOME MOZART-2 



We wish to thank James Greenburg for helpful discussions. Funding for this research was provided by Goddard Earth Science Technology (GEST) grant NCC5-494. NCAR is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation.


  1. Bond, D.W., Steiger, S., Zhang, R., Tie, X., Orville, R.: The important of production by lightning in the tropics. Atmos. Environ. 36, 1509–1519 (2002)CrossRefGoogle Scholar
  2. Bucsela E.J., Celarier, E.A., Wenig, M.O., Gleason, J.F., Veefkind, J.P., Boersma, K.F., Boersma, E.: Algorithm for NO2 vertical column retrieval from the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 44 (2006)Google Scholar
  3. Burrows, J.P., et al.: The Global Ozone Monitoring Experiment (GOME): mission concept and first scientific results. J. Atmos. Sci. 56, 151–175 (1999)CrossRefGoogle Scholar
  4. Chandra, S., Ziemke, J.R., Min, W., Read, W.G.: Effects of 1997–1998 El Nino on tropospheric ozone and water vapor. Geophys. Res. Lett. 25, 3867–3870 (1998)CrossRefGoogle Scholar
  5. Chandra, S., Ziemke, J.R., Bhartia, P.K., Martin, R.V.: Tropical tropospheric ozone, implications for dynamics and biomass burning. J. Geophys. Res. 107(D18), 4351, (2002)
  6. Chandra, S., Ziemke, J.R., Martin, R.V.: Tropospheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: Comparison with a global model. J. Geophys. Res. 108(D9), 4291, (2003)
  7. Chandra S., Ziemke, J.R., Tie, X., Brasseur, G.: Elevated ozone in the troposphere over the Atlantic and Pacific oceans in the Northern Hemisphere. Geophys. Res. Lett. 31, L23102, (2004)
  8. Crutzen, P.J.: Influence of nitrogen oxides on atmospheric ozone content. Q. J. R. Meteorol. Soc. 96(408), 320– (1970)CrossRefGoogle Scholar
  9. de Laat, A.T.J., Aben, I., Roelofs, G.J.: A model perspective on total tropospheric O3 column variability and implications for satellite observations. J. Geophys. Res. 110, D13303, (2005)
  10. Granier, C., Lamarque, J.F., Mieville, A., Muller, J.F., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., Wallens, S.: POET, a database of surface emissions of ozone precursors. Available at (2005)
  11. Hauglustaine, D.A., Brasseur, G.P., Levine, J.S.: A sensitivity simulation of tropospheric ozone changes due to the 1997 Indonesian fire emissions. Geophys. Res. Lett. 26(21), 3305–3308 (1999)CrossRefGoogle Scholar
  12. Horowitz, L.W., Walters, S., Mauzerall, D., Emmons, L., Rasch, P., Granier, C., Tie, X., Lamarque, J.F., Schultz, M., Brasseur, G.: A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res. 108(D24), 4784, (2003)
  13. Jacob, D.J., Logan, J.A., Murti, P.P.: Effect of rising Asian emissions on surface ozone in the United States. Geophys. Res. Lett. 26(14), 2175–2178 (1999)CrossRefGoogle Scholar
  14. Kleinman, L.I., Daum, P.H., Lee, Y.N., Nunnermacker, L.J., Springston, S.R., Weinstein-Lloyd, J., Rudolf, J.: Sensitivity of O3 production rate to O3 precursors. Geophys. Res. Lett. 28(15), 2903–2906 (2001)CrossRefGoogle Scholar
  15. Kunhikrishnan, T., Lawrence, M.G., von Kuhlmann, R., Richter, A., Ladstätter-Weißenmayer, A., Burrows, J.P.: Analysis of tropospheric NOx over Asia using the model of atmospheric transport and chemistry (MATCH-MPIC) and GOME-satellite observations. Atmos. Environ. 38, 581–596 (2004)CrossRefGoogle Scholar
  16. Lelieveld, J., Dentener, F.J.: What controls tropospheric ozone? J. Geophys. Res. 105, 3531–3552 (2000)CrossRefGoogle Scholar
  17. Olivier J., Peters, J., Granier, C., Petron, G., Muller, J.F., Wallens, S.: Present and future surface emissions of atmospheric compounds. POET report #2, EU project EVK2-1999-00011 (2003)Google Scholar
  18. Reber, C.A.: The upper Atmosphere Research Satellite (UARS). Geophys. Res. Lett. 20, 1215–1218 (1993)Google Scholar
  19. Richters, A., Burrows, J.P.: Tropospheric NO2 from GOME measurements. Adv. Space Res. 29(11), 1673–1683 (2002)CrossRefGoogle Scholar
  20. Ridley, B.A., Dye, J.E., Walega, J.G., Zheng, J., Grahek, F.E., Rison, W.: On the production of active nitrogen by thunderstorms over New Mexico. J. Geophys. Res. 101(D15), 20, 985–21,006 (1996)CrossRefGoogle Scholar
  21. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics. Wiley, New York (1998)Google Scholar
  22. Sillman, S.: The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J. Geophys. Res. 100, 14, 175–14,188 (1995)CrossRefGoogle Scholar
  23. Sudo, K., Takahashi, M.: Simulation of tropospheric ozone changes during 1997–1998 El Nino: meteorological impact on tropospheric photochemistry. Geophys. Res. Lett. 28, 4091–4094 (2001)CrossRefGoogle Scholar
  24. Tie, X., Brasseur, G., Zhang, R., Emmons, L., Lei, W.: Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere. J. Geophys. Res. 106, 3167–3178 (2001)CrossRefGoogle Scholar
  25. Tie, X., Brasseur, G., Zhao, C., Granier, C., Massie, S., Qin, Y., Wang, P.C., Wang, G.L., Yang, P.C.: Chemical characterization of air pollution in eastern China and the eastern United States. Atmos. Environ. 40, 2607–2625 (2006)CrossRefGoogle Scholar
  26. Thompson, A.M.: The oxidizing capacity of the Earth’s atmosphere – probable past and future changes. Science 256(5060), 1157–1165 (1992)CrossRefGoogle Scholar
  27. Thompson, A.M., Witte, J.C., Hudson, R.D., Guo, H., Herman, J.R., Fujiwara, M.: Tropical tropospheric ozone and biomass burning. Science 291(551), 2128–2132 (2001)CrossRefGoogle Scholar
  28. Valks, P.J.M., Piters, P.J.M., Lambert, J.C., Zehner, C., Kelder, H.: A fast delivery system for the retrieval of near real-time ozone columns from GOME data. Int. J. Remote Sens. 24(3), 423–436 (2003)CrossRefGoogle Scholar
  29. Velders, et al.: Global tropospheric NO2 column distributions: comparing three-dimensional model calculations with GOME measurements. J. Geophys. Res. 106(D12), 12, 643–12,660 (2001)CrossRefGoogle Scholar
  30. Vitousek, P.M., Aber, J.D., Howarth, R.W., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G.: Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, Tempe, AZ. 7(3), 737–750 (1997)CrossRefGoogle Scholar
  31. Zhang, R., Tie, X., Bond, D.: Impacts of Anthropogenic and Natural NOx Sources over the U.S. on Tropospheric Chemistry. Proc. Nat. Acad. Sci. U. S. A. 100, 1505–1509 (2003)CrossRefGoogle Scholar
  32. Zhao, C.S., Tie, X., Wang, G.L., Qin, Y., Yang, P.C.: Analysis of air quality in eastern China and its interaction with other regions of the world. 55, 189–204, doi: 10.1007/s10874-006-9022-1 (2006)
  33. Ziemke, J.R., Chandra, S., Duncan, B.N., Froidevaux, L., Bhartia, P.K., Levelt, P.F., Waters, J.W.: Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. 111, 1–18, D19303, doi: 10.1029/2006JD007089 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • X. Tie
    • 1
    Email author
  • S. Chandra
    • 2
    • 3
  • J. R. Ziemke
    • 2
    • 3
  • C. Granier
    • 4
  • G. P. Brasseur
    • 1
    • 5
  1. 1.National Center of Atmospheric ResearchBoulderUSA
  2. 2.University of Maryland Baltimore County (UMBC) Goddard Earth Sciences and Technology (GEST)BaltimoreUSA
  3. 3.NASA Goddard Space Flight Center, Code 613.3GreenbeltUSA
  4. 4.NOAABoulderUSA
  5. 5.Max Planck Institute of MeteorologyHamburgGermany

Personalised recommendations