Journal of Atmospheric Chemistry

, Volume 56, Issue 1, pp 1–20 | Cite as

Measurement of Ambient, Interstitial, and Residual Aerosol Particles on a Mountaintop Site in Central Sweden using an Aerosol Mass Spectrometer and a CVI

  • Frank Drewnick
  • Johannes Schneider
  • Silke S. Hings
  • Nele Hock
  • Kevin Noone
  • Admir Targino
  • Silke Weimer
  • Stephan Borrmann
Article

Abstract

The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Åreskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.

Key words

AMS aerosol activation CVI scavenging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, B.A.: Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989)CrossRefGoogle Scholar
  2. Alfarra, M.R.: Insights into atmospheric organic aerosols using an aerosol mass spectrometer, PhD thesis, University of Manchester, Institute of Science and Technology (UMIST), UK (2004)Google Scholar
  3. Alfarra, M.R., Paulsen, D, Gysel, M., Garfoth, A.A., Dommen, J., Prevot, A.S.H., Worsnop, D.R, Baltensperger, U., Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmos. Chem. Phys. 6, 7747–7789 (2006)Google Scholar
  4. Allan, J.D., Jimenez, J.L., Williams, P.I., Alfarra, M.R., Bower, K.N., Jayne, J.T., Coe, H., Wornsop, D.R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer – 1. Techniques of data interpretation and error analysis. J. Geophys. Res. – Atmospheres 108, 4090, http://dx.doi.org/10.1029/2002JD002358 (2003)
  5. Allan, J.D., Delia, A.E., Coe, H., Bower, K.N., Alfarra, M.R., Jimenez, J.L., Middlebrook, A.M., Drewnick, F., Onasch, T.B., Canagaratna, M.R., Jayne, J.T., Worsnop, D.R.: A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. J. Aerosol Sci. 35, 909–922 (2004)CrossRefGoogle Scholar
  6. Allan, J.D., Alfarra, M.R., Bower, K.N., Coe, H., Jayne, J.T., Worsnop, D.R., Aalto, P.P., Kulmala, M., Hyötyläinen, T., Cavalli, F., Laaksonen, A.: Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an aerdyne aerosol mass spectrometer. Atmos. Chem. Phys. 6, 315–327 (2006)CrossRefGoogle Scholar
  7. DeCarlo, P., Slowik, J.G., Worsnop, D.R., Davidovits, P., and Jimenez, J.L.: Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci. Tech. 38, 1185–1205 (2004)CrossRefGoogle Scholar
  8. Drewnick, F.: Results presented on the 2. AMS Users Meeting, October 2002. Billerica, Massachusetts, USA (2002)Google Scholar
  9. Drewnick, F., Schwab J.J., Jayne, J.T., Canagaratna, M., Worsnop, D.R., Demerjian, K.L.: Measurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part I: mass concentrations. Aerosol Sci. Tech. 38, 92–103 (2004)CrossRefGoogle Scholar
  10. Drewnick, F., Hings S.S., DeCarlo, P., Jayne, J.T., Gonin, M., Fuhrer, K., Weimer, S., Jimenez, J.L., Demerjian, K.L., Borrmann, S., Worsnop, D.R.: A new Time-of-Flight Aerosol Mass Spectrometer (TOF-AMS)-Instrument description and first field deployment. Aerosol Sci. Tech. 39, 637–658 (2005)CrossRefGoogle Scholar
  11. Gieray, R., Greiner, W., Wieser, P.H.: Laser microprobe mass analysis of fog droplet residues. J. Aerosol Sci. 20, 1209–1212 (1989)CrossRefGoogle Scholar
  12. Hallberg, A., Noone, K.J., Ogren, J.A., Svenningsson, I.B., Flossmann, A., Wiedensohler, A., Hansson, H.-C., Heintzenberg, J., Anderson, T., Arends, B., Maser, R.: Phase partitioning of aerosol particles in clouds at Kleiner Feldberg. J. Atmos. Chem. 19, 107–127 (1994)CrossRefGoogle Scholar
  13. Hogrefe, O., Drewnick, F., Lala, G.G., Schwab, J.J., Demerjian, K.L.: Development, operation and applications of an aerosol generation, calibration and research facility. Aerosol Sci. Tech. 38(S1), 196–214 (2004)CrossRefGoogle Scholar
  14. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.): Climate Change 2001: The Scientific Basis-Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York (2001)Google Scholar
  15. Jayne, J.T., Leard, D.C., Zhang, X., Davidovits, P., Smith, K.A., Kolb, C.E., Worsnop, D.R.: Development of an aerosol mass spectrometer for size and composition, analysis of submicron particles. Aerosol Sci. Tech. 33, 49–70 (2000)CrossRefGoogle Scholar
  16. Jimenez, J.L., Jayne, J.T., Shi, Q., Kolb, C.E., Worsnop, D.R., Yourshaw, I., Seinfeld, J.H., Flagan, R.C., Zhang, X., Smith, K.A., Morris, J., Davidovits, P.: Ambient aerosol sampling with an aerosol mass spectrometer. J. Geophys. Res. – Atmospheres 108 (D7), 8425, http://dx.doi.org/10.029/2001JD001213 (2003a)
  17. Jimenez, J.L., Bahreini, R., Cocker, D.R., Zhuang, H., Varutbangkul, V., Flagan, R.C., Seinfeld, J.H., O’Dowd, C., Hoffmann, T.: New particle formation from photooxidation of diiodomethane (CH2I2). J. Geophys. Res. – Atmospheres 108(D10), 4090 (2003b)Google Scholar
  18. Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., McMurry, P.H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176 (2004)CrossRefGoogle Scholar
  19. Lide, D.R. (ed.): Handbook of Chemistry and Physics (80th Edition). CRC Press, Boca Raton, Florida (1999)Google Scholar
  20. Noone, K.J., Ogren, J.A., Heintzenberg, J., Charlson, R.J., Covert, D.S.: Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Tech. 8, 235–244 (1988)Google Scholar
  21. Noone, K.J., Ogren, J.A., Noone, K.B., Hallberg, A., Fuzzi, S., Lind, J.A.: Measurements of the partitioning of hydrogen-peroxide in a stratiform cloud. Tellus 43B, 280–290 (1991)Google Scholar
  22. Noone, K.J., Ogren, J.A., Hallberg, G.A., Heintzenberg, J., Ström, J., Hansson, H.C., Svenningsoon, B., Wiedensohler, A., Fuzzi, S., Facchini, M.C., Arends, B.G., Berner, A.: Changes in aerosol size and phase distributions due to chemical and physical processes in fog. Tellus 44B, 489–504 (1992)Google Scholar
  23. Noone, K.J., Ostrom, E., Ferek, R.J., Garrett, T., Hobbs, P.V., Johnson, D.W., Taylor, J.P., Russell, L.M., Flagan, R.C., Seinfeld, J.H., O’Dowd, C.D., Smith, M.H., Durkee, P.A., Nielsen, K., Hudson, J.G., Pockalny, R.A., De Bock, L., Van Grieken, R.E., Gasparovic, R.F., Brooks, I.: A case study of ships forming and not forming tracks in moderately polluted clouds. J. Atmos. Sci. 57, 2729–2747 (2000)CrossRefGoogle Scholar
  24. Ogren, J.A., Heintzenberg, J., Charlson, R.J.: In situ sampling of clouds with a droplet to aerosol converter. Geophys. Res. Lett. 12, 121–124 (1985)Google Scholar
  25. Ogren, J.A., Heintzenberg, J., Zuber, A., Noone, K.J., Charlson, R.J.: Measurements of the size-dependence of solute concentrations in cloud droplets. Tellus 41B, 24–31 (1989)CrossRefGoogle Scholar
  26. Schneider, J.: Unpublished Results (2005)Google Scholar
  27. Schneider, J., Hings, S.S., Hock, B.N., Weimer, S., Borrmann, S., Fiebig, M., Petzold, A., Busen, R., Kärcher, B.: Aircraft-based operation of an aerosol mass spectrometer: Measurements of tropospheric aerosol composition. J. Aerosol Sci. 37, 839–857, 2006a, doi:10.1016/j.jaerosci.2005.07.002
  28. Schneider, J., Weimer S., Drewnick, F., Borrmann, S., Helas, G., Gwaze, P., Schmid, O., Andreae, M.O., Kirchner U.: Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. Int. J. Mass. Spec. in press, 2006b, doi:10.1016/j.ijms.2006.07.008
  29. Twomey, S.: Minimum size of particle for nucleation in clouds. J. Atmos. Sci. 34, 1832–1835 (1977)CrossRefGoogle Scholar
  30. Zhang, Q., Alfarra, M.R., Worsnop, D.R., Allan, J.D., Coe, H., Canagaratna, M.R., Jimenez, J.L.: Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Eviron. Sci. Technol. 39, 4938–4952 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Frank Drewnick
    • 1
    • 2
  • Johannes Schneider
    • 1
  • Silke S. Hings
    • 1
    • 2
  • Nele Hock
    • 1
    • 2
  • Kevin Noone
    • 3
  • Admir Targino
    • 3
  • Silke Weimer
    • 2
    • 4
    • 5
  • Stephan Borrmann
    • 1
    • 2
  1. 1.Particle Chemistry DepartmentMax-Planck Institute for ChemistryMainzGermany
  2. 2.Institute for Atmospheric PhysicsUniversity of MainzMainzGermany
  3. 3.Department of Applied Environmental ScienceStockholm UniversityStockholmSweden
  4. 4.EMPADübendorfSwitzerland
  5. 5.Paul Scherrer InstituteVilligenSwitzerland

Personalised recommendations