Journal of Atmospheric Chemistry

, Volume 55, Issue 2, pp 147–166 | Cite as

Measurement and investigation of chamber radical sources in the European Photoreactor (EUPHORE)

  • Judit ZádorEmail author
  • Tamás Turányi
  • Klaus Wirtz
  • Michael J. Pilling
Original Article


It is essential to quantify the background reactivity of smog-chambers, since this might be the major limitation of experiments carried out at low pollutant concentrations typical of the polluted atmosphere. Detailed investigation of three chamber experiments at zero-NO x in the European Photoreactor (EUPHORE) were carried out by means of rate-of-production analysis and two uncertainty analysis tools: local uncertainty analysis and Monte Carlo simulations with Latin hypercube sampling. The chemical mechanism employed was that for methane plus the inorganic subset of the Master Chemical Mechanism (MCMv3.1). Newly installed instruments in EUPHORE allowed the measurement of nitrous acid and formaldehyde at sub-ppb concentrations with high sensitivity. The presence of HONO and HCHO during the experiments could be explained only by processes taking place on the FEP Teflon walls. The HONO production rate can be described by the empirical equation W(HONO)EUPHORE dry = a × j NO 2× exp (− T 0/T) in the low relative humidity region (RH < 2%, a = 7.3×1021 cm−3, T 0 = 8945K), and by the equation W(HONO)EUPHORE humid = W(HONO)EUPHORE dry+ j NO 2× b × RH q in the higher relative humidity region (2% < RH < 15%, b = 5.8×108 cm−3 and q = 0.36, and RH is the relative humidity in percentages). For HCHO the expression W(HCHO)EUPHORE = c × j NO 2exp (− T0/T) is applicable (c = 3.1×1017 cm−3 and T0 = 5686 K). In the 0–15% relative humidity range OH production from HONO generated at the wall is about a factor of two higher than that from the photolysis of 100 ppb ozone. Effect of added NO2 was found to be consistent with the dark HONO formation rate coefficient of MCMv3.1.


European Photoreactor Master Chemical Mechanism Radical sources Smog chamber Uncertainty analysis Formaldehyde Nitrous acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F.J., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I –gas phase reactions of Ox, HOx, NOx and sox species. Atmos. Chem. Phys. 4, 1461–1738 (2004)Google Scholar
  2. Becker, K.H.: EUPHORE: Final report to the European commission, EV5V-CT92-0059, Bergische Universität. Wuppertal, Germany (1996)Google Scholar
  3. Bloss, C., Wagner, V., Bonzanini, A., Jenkin, M.E., Wirtz, K., Martin-Reviejo, M., Pilling, M.J.: Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data. Atmos. Chem. Phys. 5, 623–639 (2005)Google Scholar
  4. Carter, W.P.L., Atkinson, R., Winer, A.M., Pitts, J.N.J.: Evidence for chamber-dependent radical sources: Impact on kinetic computer models for air pollution. Int. J. Chem. Kinet. 13, 735–740 (1981)Google Scholar
  5. Carter, W.P.L., Atkinson, R., Winer, A.M., Pitts, J.N.J.: Experimental investigation of chamber-dependent radical sources. Int. J. Chem. Kinet. 14, 1071–1103 (1982)Google Scholar
  6. Carter, W.P.L., Cocker, D.R., Fitz, D.R., Malkina, I.L., Bumiller, K., Sauer, C.G., Pisano, J.T., Bufalino, C., Song, C.: A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 39, 7768–7788 (2005)Google Scholar
  7. Carter, W.P.L., Lurmann, F.W.: Evaluation of a detailed gas-phase atmospheric reaction-mechanism using environmental chamber data. Atmos. Environ. 25, 2771–2806 (1991)Google Scholar
  8. DeMore, W.B., Sander, S.P., Golden, D.M., Hampson, R.F.J., Kurylo, M.J., Howard, C.J., Ravishankara, A.R., Kolb, C.E., Molina, M.J.: Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation Number 12, JPL 97–4, Jet Propulsion Laboratory, Pasadena (1997)Google Scholar
  9. Finlayson-Pitts, B.J., Wingen, L.M., Sumner, A.L., Syomin, D., Ramazan, K.A.: The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospehres: An integrated mechanism. Phys. Chem. Chem. Phys. 5, 223–242 (2003)Google Scholar
  10. Glasson, W.A., Dunker, A.M.: Investigation of background radical sources in a teflon-film irradiation chamber. Environ. Sci. Technol. 23, 970–978 (1989)Google Scholar
  11. Graham, R.A., Johnston, H.S.: Photochemistry of NO3 and kinetics of N2O5-O3 system. J. Phys. Chem. 82, 254–268 (1978)Google Scholar
  12. Heland, J., Kleffmann, J., Kurtenbach, R., Wiesen, P.: A new instrument to measure gaseous nitrous acid (HONO) in the atmosphere. Environ. Sci. Technol. 35, 3207–3212 (2001)Google Scholar
  13. Helton, J.C., Davis, F.J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. SAND2001-0417, Sandia National Laboratories, Albuquerque, New Mexico (2002)Google Scholar
  14. Jeffries, H.E., Sexton, K.G., Adelman, Z.: Auxiliary mechanism (wall models) for UNC outdoor chamber. Sixth US/Germany Workshop on Ozone/Fine Particle Science, pp 175–191Google Scholar
  15. Killus, J.P., Whitten, G.Z.: Background reactivity in smog chambers. Int. J. Chem. Kinet. 22, 547–575 (1990)Google Scholar
  16. Kleffmann, J., Heland, J., Kurtenbach, R., Lörzer, J.C., Wiesen, P.: A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ. Sci. Pollut. Res. 9, 48–54 (2002)Google Scholar
  17. Madronich, S.: Troposperic ultraviolet-visible (TUV) radiation model, (2003)
  18. Madronich, S., Flocke, S.: The role of solar radiation in atmospheric chemistry, in P. Boule (ed.). Handbook of environmental chemistry, pp 1–26 (1998)Google Scholar
  19. Pitts, J.N., Sanhueza, E., Atkinson, R., Carter, W.P.L., Winer, A.M., Harris, G.W., Plum, C.N.: An investigation of the dark formation of nitrous-acid in environmental chambers. Int. J. Chem. Kinet. 16, 919–939 (1984)Google Scholar
  20. Rivera-Figueroa, A.M., Sumner, A.L., Finlayson-Pitts, B.J.: Laboratory studies of potential mechanisms of renoxification of tropospheric nitric acid. Environ. Sci. Technol. 37, 548–554 (2003)Google Scholar
  21. Rohrer, F., Bohn, B., Brauers, T., Brüning, T., Johnen, F.-J., Wahner, A., Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 2189–2201 (2005)Google Scholar
  22. Rye, R.R., Martinez, R.J.: Photolithography of polytetrafluoroethylene for adhesion. J. Appl. Polym. Sci. 37, 2529–2536 (1989)Google Scholar
  23. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis for chemical models. Chem. Rev. 105, 2811–2827 (2005)Google Scholar
  24. Saltelli, A., Scott, E.M., Chen, K.: Sensitivity analysis, Wiley, Chichester (2000)Google Scholar
  25. Sander, S.P., Golden, D.M., Kurylo, M.J., Moortgat, G.K., Ravishankara, A.R., Kolb, C.E., Molina, M.J., Finlayson-Pitts, B.J.: Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation Number 14, JPL 02-25, Jet Propulsion Laboratory, Pasadena (2002)Google Scholar
  26. Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development of the master chemical mechanism, MCM v3 (part a): Tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003)Google Scholar
  27. Turányi, T.: Sensitivity analysis of complex kinetic systems –tools and applications. J. Math. Chem. 5, 203–248 (1990)Google Scholar
  28. Turányi, T., Zalotai, L., Dóbé, S., Bérces, T.: Effect of the uncertainty of kinetic and thermodynamic data on methane flame simulation results. Phys. Chem. Chem. Phys. 4, 2568–2578 (2002)Google Scholar
  29. Zádor, J., Wagner, V., Wirtz, K., Pilling, M.J.: Quantitative assessment of uncertainties for a model of tropospheric ethene oxidation using the European photoreactor (EUPHORE). Atmos. Environ. 39, 2805–2817 (2005)Google Scholar
  30. Zádor, J., Zsély, I.G., Turányi, T., Ratto, M., Tarantola, S., Saltelli, A.: Local and global uncertainty analysis of a methane flame model. J. Phys. Chem. A 109, 9795–9807 (2005)Google Scholar
  31. Zhou, X.L., He, Y., Huang, G., Thornberry, T.D., Carroll, M.A., Bertman, S.B.: Photochemical production of nitrous acid on glass sample manifold surface. Geophys. Res. Lett. 29, art. No. 1681 (2002)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Judit Zádor
    • 1
    Email author
  • Tamás Turányi
    • 1
  • Klaus Wirtz
    • 2
  • Michael J. Pilling
    • 3
  1. 1.Department of Physical ChemistryEötvös University (ELTE)BudapestHungary
  2. 2.Centro de Estudios Ambientales del Mediterraneo (CEAM)ValenciaSpain
  3. 3.Department of ChemistryUniversity of LeedsLeedsU.K.

Personalised recommendations