Journal of Atmospheric Chemistry

, Volume 55, Issue 3, pp 205–226 | Cite as

High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations

  • Om Prakash Tripathi
  • Sophie Godin-Beekmann
  • Franck Lefèvre
  • Marion Marchand
  • Andrea Pazmiño
  • Alain Hauchecorne
  • Florence Goutail
  • Hans Schlager
  • C. Michael Volk
  • B. Johnson
  • G. König-Langlo
  • Stefano Balestri
  • Fred Stroh
  • T. P. Bui
  • H. J. Jost
  • T. Deshler
  • Peter von der Gathen


Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1 × 1) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1 × 1 provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NOy for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NOy levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.

Key Words

Comparison with observations High-resolution 3-D chemical transport model Ozone loss Stratospheric chemistry Polar ozone Sensitivity tests 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D.R., Bevilacqua, R.M., Nedoluha, G.E., Randall, C.R., Manney, G.L.: Unusual stratospheric transport and mixing during the 2002 Antarctic winter. Geophys. Res. Lett. 30(12), 1599, doi:10.1029/2003GL017117 (2003)CrossRefGoogle Scholar
  2. Bojkov, R.D., Fioletov, V.E., Balis, D.S., Zerefos, C.S., Kadygrova, T.V., Shalamjansky, A.M.: Further ozone decline during the Northern Hemisphere winter-spring of 1994–1995 and the new record low ozone. Geophys. Res. Lett. 22, 2729–2732 (1995)CrossRefGoogle Scholar
  3. Braathen, G.O., Rummukainen, M., Kyro, E., Schmidt, U., Dahlback, A., Jorgensen, T., Fabian, R., Rudakov, V., Gil, M., Borchers, R.: Temporal development of ozone within the Arctic vortex during the winter of 1991/92. Geophys. Res. Lett. 21, 1407–1410 (1994)CrossRefGoogle Scholar
  4. Brasseur, G.P., Tie, X., Rasch, P.J., Lefevre, F.: A three-dimensional simulation of the Antarctic ozone hole: impact of anthropogenic chlorine on the lower stratosphere and upper troposphere. J. Geophys. Res. 02, 8909–8930 (1997)CrossRefGoogle Scholar
  5. Brune, W.H., et al.: The potential for ozone depletion in the Arctic polar stratosphere. Science 252, 1260–1266 (1991)CrossRefGoogle Scholar
  6. Burkholder, J.B., Orlando, J.J., Howard, C.J.: Ultraviolet Absoption Cross Section of Cl2O2 between 210 and 410 nm. J. Phys. Chem. 94, 687–695 (1990)CrossRefGoogle Scholar
  7. Carslaw, K.S., Kettleborough, J.A., Northway, M.J., Davies, S., Gao, R.-S., Fahey, D.W., Baumgardner, D.G., Chipperfield, M.P., Kleinbohl, A.: A vortex-scale simulation of the growth and sedimentation of large nitric acid hydrate particle. J. Geophys. Res. 107(D20), 8300, doi:10.1029/2001JD000467(2002)CrossRefGoogle Scholar
  8. Chipperfield, M.P.: Multiannual simulation with a three-dimensional chemical transport model. J. Gephys. Res. 104, 1781–1806 (1999)CrossRefGoogle Scholar
  9. Christensen, T., Knudsen, B.M., Streibel, M., Andersen, S.B., Benesova, A., Braathen, G., Claude, H., Davies, J., De Backer, H., Dier, H., Dorokhov, V., Gerding, M., Gil, M., Henchoz, B., Kelder, H. Kivi, R. Kyrö, E. Litynska, Z., Moore, D., Peters, G., Skrivankova, P., Stübi, R., Turunen, T., Vaughan, G., Viatte, P., Vik, A.F., von der Gathen, P., Zaitcev, I.: vortex-averaged Arctic ozone depletion in the winter 2002/2003. Atmos. Chem. Phys. 5, 131–138 (2005)Google Scholar
  10. Drdla, K., Schoeberl, M.R., Browell, E.V.: Microphysical modelling of the 1999–2000 Arctic winter, 1. Polar stratospheric clouds, denitrification, and dehydration. J. Geophys. Res. 107, 8312, doi:10.1029/2001JD000782[printed 108(D5), 2003] (2003)Google Scholar
  11. Davies, S., et al.: Modeling the effect of denitrification on Arctic ozone depletion during winter 1999/2000. J. Geophys. Res. 107 8322, doi:10.1029/2001JD000445[printed 108(D5), 2003] (2002)CrossRefGoogle Scholar
  12. Dessler, A.E., Wu, J., Santee, M.L., Schoeberl, M.R.: Satellite observations of temporary and irreversible denitrification. J. Geophys. Res., 104, 13,993–14,002 (1999)Google Scholar
  13. Fahey, D.W., et al.: Measurements of nitric oxide and total reactive nitrogen in the Antarctic stratosphere: observations and chemical implications. J. Geophys. Res. 94, 16,665–16,681 (1989)Google Scholar
  14. Fahey, D.W. et al.: In situ measurements of total reactive nitrogen, total water and aerosol in a polar stratospheric cloud in the Antarctic. J. Geophys. Res. 94, 11299–11315 (1989a)Google Scholar
  15. Fahey, D.W., et al.: The detection of large HNO3-containing particles in the winter Arctic stratosphere. Science 291, 1026–1031 (2001)CrossRefGoogle Scholar
  16. Fahey, D.W., Solomon, S., Kawa, S.R., Loewenstein, M., Podolske, J.R., Strahan, S.E., Chan, K.R.: A diagnostic for denitrification in the winter polar stratosphere. Nature 345, 698–702 (1990)CrossRefGoogle Scholar
  17. Gao, R.S., et al.: Role of NOy as a diagnostic of small-scale mixing in a denitrified polar vortex. J. Geophys. Res. 107 (D24), 4794, doi:10.1029/2002JD002332 (2002)CrossRefGoogle Scholar
  18. Gille, J.C., Russell III, J.M.,: The Limb Infrared Monitor of the Stratosphere: experiment Description, Performance, and Results. J. Geophys. Res. 89, 5125–5140 (1984)CrossRefGoogle Scholar
  19. Godin, S., Marchand, M., Hauchecorne, A., Lefevre, F.: Influence of Arctic polar ozone depletion on lower stratospheric ozone amounts at Haute-Provence Observatory (43.92^N, 5.71^E). J. Geophys. Res. 107(20), 8272, doi:10.1029/2001JD000516 (2002)CrossRefGoogle Scholar
  20. Goutail, F., Pommereau, J.P., Lefèvre, F., Van Roozendael, M., Andersen, S.B., Kastad Høiskar, B.A., Dorokhov, V., Kyro, E., Chipperfield, M.P., Feng, W.: Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters. Atmos. Chem. Phys. 5, 665–677 (2005)Google Scholar
  21. GrooΒ, J.-U., Gunther, G., Konopka, P., Muller, R., McKenna, D.S., Stroh, F., Vogel, B. Engel, A., Muller, M., Hoppel, K., Bevilacqua, R., Richard, E., Webster, C.R., Elkins, J.W., Hurst, D.F., Romashkin, P.A., Baumgardner, D.G.: simulation of ozone depletion in spring 2000 with the Chemical Lagrangian Model of the Stratosphere (CLaMS). J. Geophys. Res. 107(D20), 8295, doi:10.1029/2001JD000456 (2002)CrossRefGoogle Scholar
  22. Hansen, G., Svenoe, T., Chipperfield, M.P., Dahlback, A., Hopp, U.-P.: Evidence of substantial ozone depletion in winter 1995/96 over Northern Norway. Geophys. Res. Lett. 24, 799–802 (1997)CrossRefGoogle Scholar
  23. Hanson, D., Mauersberger, K.: Laboratory studies of the nitric acid trihydrate: implications for the south polar stratosphere. Geophys. Res. Lett. 15, 855–858 (1988)Google Scholar
  24. Harris, N.R.P., Rex, M., Goutail, F., Knudsen, B.M., Manney, G.L., Muller, R., von der Gathen, P.: Comparison of empirically derived ozone losses in the Arctic vortex. J. Geophys. Res. 107, D20, 10.1029/2001JD000482 (2002)Google Scholar
  25. Hauchecorne, A., Godin, S., Marchand, M., Heese, B., Souprayen, C.: Quantification of the transport of chemical constituents from the polar vortex to middle latitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity. J. Geophys. Res. 107, doi:10.1029/2001JD000491 (2002)Google Scholar
  26. Heese, B., Godin, S., Hauchecorne, A.: Forecast and simulation of stratospheric ozone filaments: a validation of a high-resolution potential vorticity advection model by airborne ozone lidar measurements in winter 1998/1999. J. Geophys. Res. 106(D17), 20,011–20,024 (2001)CrossRefGoogle Scholar
  27. Hintsa, E.J., et al.: Dehydration and denitrification in the Arctic polar vortex during the 1995-1996 winter. Geophys. Res. Lett. 25, 501–504 (1998)CrossRefGoogle Scholar
  28. Hoppel K., Bevilacqua, R.M., Allen, D.R., Nedoluha, G., Randall, C.E.: POAM III observations of the anomalous 2002 Antarctic ozone hole. Geophys. Res. Lett. 30(7), 1394, doi:10.1029/2003GL016899 (2003)CrossRefGoogle Scholar
  29. Hubler, G., Fahey, D.W., Kelly, K.K., Montzka, D.D., Karroll, M.A. Tuck, A.F., Heidt, L.E., Pollock, W.H., Gregory, G.L., Vedder, J.F.: Redistribution of reactive odd nitrogen in the lower Arctic stratosphere. Geophys. Res. Lett. 17, 453–456 (1990)Google Scholar
  30. Hurst, D.F., Schauffler, S.M., Greenblatt, J.B., Jost, H., Herman, R.L., Elkins, J.W., Romashkin, P.A., Atlas, E.L., Donnelly, S.G., Podolske, J.R., Loewenstein, M. Webster, C.R., Flesch, G.J., Scott, D.C.: The construction of a unified, high-resolution nitrous oxide data set for ER-2 flights during SOLVE. J. Geophys. Res. 107 (ND20), 8271 (2002)CrossRefGoogle Scholar
  31. Kondo, Y., et al.: NOy-N2O correlation observed inside the Arctic vortex in February 1997: dynamical and chemical effects. J. Geophys. Res. 104, 8215–8224 (1999)CrossRefGoogle Scholar
  32. Konopka, P., GrooΒ, J.U., Hildegard, M.S., Muller, R.: Mixing and Chemical ozone loss during and after the Antarctic polar vortex major warming in September 2002, J. Atmos. Sci. 62(3), 848859, doi:10.1175/JAS-3329.1 (2005)CrossRefGoogle Scholar
  33. Kopp, G., et al.: Evolution of ozone and ozone-related species over Kiruna during the SOLVE/THESEO 2000 campaign retrieved from ground-based millimeter-wave and infrared observations. J. Geophys. Res. 107, 8308, doi:10.1029/2001JD001064,[printed 108 (D5), 2003] (2002)CrossRefGoogle Scholar
  34. Lefèvre, F., Figarol, F., Carslaw, K.S., Peter, T.: The 1997 Arctic ozone depletion quantified from three-dimensional model simulations. Geophys. Res. Lett. 25, 2425–2428 (1998)CrossRefGoogle Scholar
  35. Lefèvre, F., Brasseur, G.P., Folkins, I., Smith, A.K., Simon, P.: Chemistry of the 1991/1992 stratospheric winter: three dimensional model simulation. J. Geophys. Res. 99, 8183–8195 (1994)CrossRefGoogle Scholar
  36. Manney, G.L., Sabutis, J.L.: Development of the polar vortex in the 1999–2000 Arctic winter stratosphere. Geophys. Res. Lett. 27, 2589–2592 (2000)CrossRefGoogle Scholar
  37. Manney, G.L., Sabutis, J.L., Allen, D.R., Lahoz, W.A., Scaife, A.A., Randall, C.E, Pawson, S., Naujokat, B., Swinbank, R.: Simulations of dynamics and transport during the September 2002 Antarctic major warming. J. Atmos. Sci. 62(3), 690707, doi:10.1175/JAS-3313.1 (2005)CrossRefGoogle Scholar
  38. Manney, G.L., Froidevaux, L., Waters, J.W., Santee, M.L., Read, W.G., Flower, D.A., Zarnot, R.F., Zurek, R.W.: Arctic ozone depletion observed by UARS MLS during the 1994–95 winter. Geophys. Res. Lett. 23, 85–88 (1996)CrossRefGoogle Scholar
  39. Marchand, M., Godin, S., Hauchecorne, A., Lefevre, F., Bekki, S., Chipperfield, M.: Influence of polar ozone loss on northern mid-latitudes regions estimated by a high-resolution chemistry transport model during winter 1999–2000. J. Geophys. Res. 108(D5), 8326, doi:10.1029/2001JD000906 (2003)CrossRefGoogle Scholar
  40. Murray, F.W.: On the computation of saturation vapour pressure. J. Appl. Meterol. 6, 203–204 (1967)CrossRefGoogle Scholar
  41. Newman, P.A., et al.: An overview of the solve/theseo 2000 campaign. J. Geophys. Res. 107(D20), doi:10.1029/2001JD001303 (2002)Google Scholar
  42. Pierce, R.B., et al.: Large-scale chemical evolution of the Arctic vortex during the 1999/2000 winter: HALOE/POAM III Lagrangian photochemical modelling for the SAGE III — Ozone Loss and Validation Experiment (SOLVE) campaign. J. Geophys. Res. 107, 8317, doi:10.1029/2001JD001063[printed 108(D5), 2003] (2002)CrossRefGoogle Scholar
  43. Poole, L.R., Trepte, C.R., Harvey, V.L., Toon, G.C., Van Valkenburg, R.L.: SAGE III observations of Arctic polar stratospheric clouds — December 2002. Geophys. Res. Lett. 30(23), 2216, doi:10.1029/2003GL018496 (2003)CrossRefGoogle Scholar
  44. Proffitt, M.H., McLaughlin, R.J.: Fast-response dual-beam UV absorption ozone photometer suitable for use on stratospheric balloons. Rev. Sci. Instrum. 54, 1719–1728 (1983)CrossRefGoogle Scholar
  45. Pruppacher, H.R., Klett, J.D.: Microstructure of atmospheric clouds and precipitations, 2nd ed. Kluwer Academic Publishers (1997)Google Scholar
  46. Randall, C.E., Manney, G.L., Allen, D.R., Bevilacqua, R.M., Hornstein, J., Trepte, C., Lahoz, W., Ajtic, J., Bodeker, G.: Reconstruction and simulation of stratospheric ozone distribution during the 2002 austral winter. J. Atmos. Sci. 62(3), 748764, doi: 10.1175/JAS-3336.1 (2005)CrossRefGoogle Scholar
  47. Rex, M., et al.: Chemical depletion of Arctic ozone in winter 1999/2000. J. Geophys. Res. 107(D20), 8276, doi:10.1029/2001JD000533 (2002)CrossRefGoogle Scholar
  48. Rex, M., Salawitch, R.J., Santee, M.L., Waters, J.W., Hoppel, K., Bevilacqua, R.: On the unexplained stratospheric ozone losses during cold Arctic Januaries. Geophys. Res. Lett. 30 (1), 1008, doi:10.1029/2002GL016008 (2003)CrossRefGoogle Scholar
  49. Rex, M., et al.: A lagrangian approach to separate stratospheric chemical ozone loss from dynamical effects: results for the Arctic winters 91/92 and 94/95. International conference on ozone in the lower stratosphere, Halkidiki, Greece (1995)Google Scholar
  50. Salawitch, R.J., Wofsy, S.C., Gottlieb, E.W., Lait, L.R., Newman, P.A., Schoeberl, M.R., Loewenstein, M., Podolske, J.R., Strahan, S.E., Proffitt, M.H., Webster, C.R., May, R.D., Fahey, D.W., Baumgardner, D., Dye, J.E., Wilson, J.C., Kelly, K.K., Elkins, J.W., Chan, K.R., Anderson, J.G.: Chemical loss of ozone in the Arctic polar vortex in the winter of 1991–1992. Science 261, 1146–1149 (1993)CrossRefGoogle Scholar
  51. Santee, M.L., et al.: Interhemispheric differences in polar stratospheric HNO3, H2O, ClO and O3. Science 267, 849–852 (1995)CrossRefGoogle Scholar
  52. Santee, M.L., et al.: Six years of UARS Microwave Limb Sounder HNO3 observations: seasonal, interhemispheric, and interannual differences in the lower stratosphere. J. Geophys. Res. 104, 8225–8246 (1999)CrossRefGoogle Scholar
  53. Santee, M.L., et al.: UARS Microwave Limb Sounder HNO3 observations: implications for Antarctic polar stratospheric clouds. J. Geophys. Res. 103, 13, 285–13313 (1998)Google Scholar
  54. Santee, M.L., et al.: UARS Microwave Limb Sounder observations of denitrification and ozone loss in the 2000 Arctic late winter. Geophys. Res. Lett. 27, 3213–3216 (2000)CrossRefGoogle Scholar
  55. Schiller, C., et al.: Dehydration in the Arctic stratosphere during the SOLVE/THESEO-2000 campaigns. J. Geophys. Res. 107, 10.1029/2001JD000463 (2002)Google Scholar
  56. Schoeberl, M.R., Proffitt, M.H., Kelly, K.K., Lait, L.R., Newman, P.A., Rosenfield, J.E., Loewenstein, M., Podolske, J.R., Strahan, S.E., Chan, K.R.: Stratospheric constituent trends from ER-2 profile data. Geophys, Res. Lett. 17, 469–472 (1990)Google Scholar
  57. Singleton, C.S., Randall, C.E., Chipperfield, M.P., Davies, S., Feng, W., Bevilacqua, R.M., Hoppel, K.W., Fromm, M.D., Manney, G.L., Harvey, V.L.: 2002–2003 Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model. Atmos. Chem. Phys. 5, 597–609(2005)Google Scholar
  58. Sinnhuber, B.-M., et al.: Comparison of measurements and model calculations of stratospheric bromine monoxide. J. Geophys. Res. 107(D19), 4398, doi:10.1029/2001JD000940 (2002)CrossRefGoogle Scholar
  59. Stimpfle, R.M., Wilmouth, D.M., Salawitch, R.J., Anderson, J.G.: First measurements of ClOOCl in the stratosphere: the coupling of ClOOCl and ClO in the Arctic polar vortex. J. Geophys. Res. 109, D03301, doi:10.1029/2003JD003811 (2004)CrossRefGoogle Scholar
  60. Streibel, M., von der Gathen, P., et al.: Ozone loss rates over the Arctic 2002/03 and Antarctic 2003 measured with the Match approach. Proc. Quadrennial Ozone Symposium 55, ed. C. Zerefos, Kos, Greece (2004)Google Scholar
  61. Tabazadeh, A., et al.: Quantifying denitrification and its effect on ozone recovery. Science 288, 1407–1411 (2000)CrossRefGoogle Scholar
  62. Voigt, C., Schlager, H., Luo, B.P., Dörnbrack, A. Roiger, A. Stock, P., Curtius, J., Vössing, H., Borrmann, S., Davies, S., Konopka, P., Schiller, C., Shur, G., Peter, T.: Nitric acid trihydrate (NAT) formation at low NAT supersaturations. Atmos. Chem. Phys. Discuss. 4, 8579–8607 (2004)CrossRefGoogle Scholar
  63. Volk, C.M., Werner, A., Wetter, T., Ivanova, E., Wollny, A., Ulanovsky, A., Ravegnani, F., Schlager, H., Konopka, P., Toon, G.: Ozone loss within the 2003 Arctic vortex derived from in-situ observations with the Geophysica aircraft. Atmos. Chem. Phys. Discuss. (in preparation) (2006)Google Scholar
  64. von Hobe, M, GrooΒ, J.—U., Muller, R., Hrechanyy, S., Winkler, U., Stroh, F.: A re-evaluation of the ClO/Cl2O2 equilibrium constant based on stratospheric in-situ observations. Atmospheric Chem. Phys. 5, 693–702 (2005)CrossRefGoogle Scholar
  65. Waibel, A.E., et al.: Arctic ozone loss due to denitrification. Science 283, 2064–2069 (1999)CrossRefGoogle Scholar
  66. Wamsley, P.R., et al.: Distribution of halon-1211 in the upper troposphere and lower stratosphere and the 1994 total bromine budget. J. Geophys. Res. 103, 1513–1526 (1998)CrossRefGoogle Scholar
  67. Waters, J.W., Froidevaux, L., Read, W.G., Manney, G.L., Elson, L.S., Flower, D.A., Zarnot, R.F., Harwood, R.S.: Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. Nature 362, 597–602 (1993)CrossRefGoogle Scholar
  68. WMO: Scientific Assessment of Ozone Depletion: 2002, ISBN 92–807–2261–1 (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Om Prakash Tripathi
    • 1
    • 12
  • Sophie Godin-Beekmann
    • 1
  • Franck Lefèvre
    • 1
  • Marion Marchand
    • 1
  • Andrea Pazmiño
    • 1
  • Alain Hauchecorne
    • 1
  • Florence Goutail
    • 1
  • Hans Schlager
    • 2
  • C. Michael Volk
    • 3
  • B. Johnson
    • 4
  • G. König-Langlo
    • 5
  • Stefano Balestri
    • 6
  • Fred Stroh
    • 7
  • T. P. Bui
    • 8
  • H. J. Jost
    • 9
  • T. Deshler
    • 10
  • Peter von der Gathen
    • 11
  1. 1.Service d’Aéronomie – IPSL du CNRSUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Institute for Atmospheric PhysicsDLROberpfaffenhofenGermany
  3. 3.Institut für Atmosphäre und UmweltJ.W. Goethe-Universität FrankfurtFrankfurtGermany
  4. 4.Climate Monitoring and Diagnostics LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA
  5. 5.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  6. 6.Environmental Research & ServicesSesto FiorentinoItaly
  7. 7.Institute for Chemistry and Dynamics of the Geosphere (ICG-I)JuelichGermany
  8. 8.NASA Ames Research CenterMoffet FieldUSA
  9. 9.Bay Area Environmental Reserach InstituteSonomaUSA
  10. 10.Department of Atmospheric ScienceUniversity of WyomingLaramieUSA
  11. 11.Research Department PotsdamAlfred Wegener Institute for Polar and Marine ResearchTelegrafenbergGermany
  12. 12.Table Mountain Facility, NASA – Jet Propulsion LaboratoryCalifornia Institute of TechnologyWrightwoodUSA

Personalised recommendations