Journal of Atmospheric Chemistry

, Volume 55, Issue 1, pp 81–102 | Cite as

Terpene emissions from European beech (shape Fagus sylvatica~L.): Pattern and Emission Behaviour Over two Vegetation Periods

  • C. Holzke
  • T. Dindorf
  • J. Kesselmeier
  • U. Kuhn
  • R. Koppmann
Original Article


The source strength of volatile organic compounds (VOCs) emitted by vegetation is of great interest for the understanding of processes in atmospheric chemistry and climate change. In this study terpene emissions from branches of European beech (Fagus sylvatica L.) were studied in a deciduous forest. Using the branch enclosure technique changes in the emission pattern and the variation of emission rates over the year were investigated over two consecutive vegetation periods. More than 10 monoterpene compounds were found in the emissions, among which sabinene dominates. For most compounds the emission pattern changed only slightly over the year. Interestingly, two compounds tentatively identified as para-cymene and cis-ocimene showed differences in the emission behaviour in late summer compared to the other terpenes. In contrast to previous studies our investigation characterise European beech as a strong emitter. For the main compounds the emission rates changed up to two orders of magnitude as a function of temperature and light over the day. In general, highest emission rates were observed in summer and lowest in fall. A seasonality was characterized by a temperature independent decline of emissions in late summer, resulting in changes of the standard emission rate on the order of one magnitude. A standard emission factor of up to 3.5 nmol m−2s−1 for the sum of measured terpenes was calculated. No emissions were found in early spring even though leaves were fully developed and temperature and light conditions were moderate. The results underline the importance of characterising the annual variation of the emission behaviour. Especially for the up-scaling to global VOC emissions, seasonal influences have to be considered to achieve realistic emission inventories.


Algorithm ECHO Long-term variation Monoterpenes Seasonality VOCs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aschmann, S.M., Atkinson, R., Arey, J.: Products of reaction of OH radicals with α-pinene. J. Geophys. Res. 107(D14), 4191 (2002)CrossRefGoogle Scholar
  2. Atkinson, R., Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ. 37(2), 197–219 (2003)CrossRefGoogle Scholar
  3. Berenbaum, M.: Brementown revisited: allelochemical interactions in plants. Rec. Adv. Phytochem. 19, 139–169 (1985)Google Scholar
  4. Bergs, W., Geiß, H., Polster, G.: Klimawerte der meteorologischen Station der Kernforschungsanlage Jülich 1961–1985. Jü1-Spez-351, ISSN 0343-7639, Kernforschungsanlage Jülich GmbH, Abteilung Sicherheit und Strahlenschutz (1986)Google Scholar
  5. Bohlmann, J., Steele, C.L., Croteau, R.: Monoterpene synthases from grand fir (Abies grandis) cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase. J. Biol. Chem. 2728(35), 21784–21792 (1997)CrossRefGoogle Scholar
  6. Bomford, M.K., Isman, M.B.: Desensitisation of fifth instar Spodoptera litura to azadirachtin and neem. Entomol. Exp. Appl. 81, 307–313 (1996)CrossRefGoogle Scholar
  7. Brasseur, G.P., Orlando, J.J., Tyndall, G.S.: Atmospheric chemistry and global change, Oxford University Press, New York (1999)Google Scholar
  8. Ciccioli, P., Brancaleoni, E., Frattoni, M., Dipalo, V., Valentini, R., Tirone, G.G.S., Bertin, N., Hansen, U., Csiky, O., Lenz, R., Sharma, M.: Emission of reactive terpene compounds from orange orchards and their removal by within-canopy processes. J. Geophys. Res. 104(D7), 8077–8094 (1999)CrossRefGoogle Scholar
  9. Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P., Maenhaut, W.: Formation of secondary organic aerosols through photo-oxidation of isoprene. Science 303(5661), 1173–1176 (2004)CrossRefGoogle Scholar
  10. Di Carlo, P., Brune, W.H., Martinez, M., Harder, H., Lesher, R., Ren, X., Thornberry, T., Carroll, M.A., Young, V., Shepson, P.B., Riemer, D., Apel, E., Campbell, C.: Missing OH reactivity in a forest: evidence for unknown reactive biogenic VOCs. Science 304, 722–725 (2004)CrossRefGoogle Scholar
  11. Dindorf, T., Kuhn, U., Ganzeveld, L., Schebeske, G., Ciccioli, P., Holzke, C., Köble, R., Seufert, G., Kesselmeier, J.: Emission of monoterpenes from European beech (Fagus sylvatica L.) as a function of light and temperature. BGD 2, 137–182 (2005)Google Scholar
  12. Ehhalt, D.H., Rudolph, J., Schmidt, U.: On the importance of light hydrocarbons in the multiphase atmospheric systems, in W. Jaeschke (ed). Chemistry of Multiphase Atmosperic Systems, Springer-Verlag, Berlin, pp. 321–350 (1986)Google Scholar
  13. Fall, R., Karl, T., Hansel, A., Jordan, A., Lindinger, W.: Volatile organic compounds emitted after leaf wounding: on-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. 104, 15963–15974 (1999)CrossRefGoogle Scholar
  14. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A.B., Nicholas H. C., Lamb, B., Liu, S., Trainer, M., Westberg, H., Zimmerman, P.: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob. Biogeochem. Cycles 6(4), 389–430 (1992)CrossRefGoogle Scholar
  15. Fischbach, R., Staudt, M., Zimmer, I., Rambal, S., Schnitzler, J.-P.: Seasonal pattern of monoterpene synthase activities in leaves of the evergreen tree Quercus ilex. L. Physiol. Plant. 114, 354–360 (2002)CrossRefGoogle Scholar
  16. Funk, J.L., Jones, C.G., Gray, D.W., Throop, H.T., Hyatt, L.A., Lerdau, M.T.: Variation in isoprene emission from Quercus rubra: sources, causes, and consequences for estimating fluxes. J. Geophys. Res. 110, D04301, doi:10.1029/ 2004JD005229 (2005)CrossRefGoogle Scholar
  17. Gallagher, C.C., Clayborough, R., Beswick, K.M., Hewitt, C.N., Owen, S., Moncrieff, J.B., Pilegaard, K.: Assessment of relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds: study over arable crops and a mature beech forest. Atmos. Environ. 34, 2887–2899 (2000)CrossRefGoogle Scholar
  18. Gatehouse, J.A.: Plant resistance towards insect herbivores: a dynamic interaction. New Phytol. 156, 145–169 (2002)CrossRefGoogle Scholar
  19. Geron, C., Guenther, A., Sharkey, T., Arnts, R.R.: Temporal variability in basal isoprene emission factor. Tree Physiol. 20(12), 799–805 (2000)Google Scholar
  20. Guenther, A.: Seasonal and spatial variations in natural volatile organic compound emissions. Ecol. Appl. 7, 34–45 (1997)CrossRefGoogle Scholar
  21. Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau M, McKay, W.A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., Zimmerman, P.: A global model of natural volatile organic compound emissions. J. Geophys. Res. 100(D5), 8873–8892 (1995)CrossRefGoogle Scholar
  22. Guenther, A.B., Zimmerman, P.R., Harley, P.C., Monson, R.K., Fall, R.: Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res. 98(D7), 12609–12617 (1993)CrossRefGoogle Scholar
  23. Hakola, H., Rinne, J., Laurila, T.: The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver Birch (Betula pendula) and european aspen (Populus tremula). Atmos. Environ. 32(10), 1825–1833 (1998)CrossRefGoogle Scholar
  24. Hakola, H., Tarvainen, V., Laurila, T., Hiltunen, V., Hellen, H., Keronen, P.: Seasonal variation of VOC concentrations above a boreal coniferous forest. Atmos. Environ. 37(12), 1623–1634 (2003)CrossRefGoogle Scholar
  25. Hanson, D.T., Sharkey, T.D.: Rate of acclimation of the capacity for isoprene emission in response to light and temperature. Plant Cell Environ. 24, 937–946 (2001)CrossRefGoogle Scholar
  26. Harborne, J.B.: Introduction to ecological biochemistry, Academic Press, London, UK (1988)Google Scholar
  27. Harley, P., Guenther, A., Zimmerman, P.: Environmental controls over isoprene emission in deciduous oak canopies. Tree Physiol. 17, 705–714 (1997)Google Scholar
  28. Harley, P.C., Litvak, M.E., Sharkey, T.D., K., M.R.: lsoprene emission from velvet bean leaves. Plant Physiol. 105, 279–285 (1994)Google Scholar
  29. Heck, W.W., Cure, W.W., Rawlings, J.O., Zaragoza, L.J., Heagle, A.S., Heggestad, H.E., Kohut, R.J., Kress, L.W., Temple, P.J.: Assessing impacts of ozone on agricultural crops, II, crop yield functions and alternative exposure statistics. J. Air Poll. Contr. Assoc. 34, 810–817 (1984)Google Scholar
  30. Hewitt, C.N., Street, R.A.: A qualitative assessment of the emission of non-methane hydrocarbon compounds from the bisophere to the atmosphere in the UK: present knowledge and uncertainties. Atmos. Environ. 26, 3069–3077 (1992)Google Scholar
  31. Hoffmann, T., Odum, J.R., Bowman, F., Collins, D., Klockow, D., Flagan, R.C., Seinfeld, J.H.: Formation of organic aerosols from the oxidation of biogenic hydrocarbons. J. Atmos. Chem. 26(2), 189–222 (1997)CrossRefGoogle Scholar
  32. Holzinger, R., Lee, A., Paw, U.K.T., Goldstein, A.: Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. ACPD 4, 5345–5365 (2004)Google Scholar
  33. Hummelbrunner, L.A., Isman, M.B.: Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm. Spodoptera litura (Lep. Noctuidae). J. Agri. Food Chem. 49, 715–720 (2001)CrossRefGoogle Scholar
  34. Janson, R.W.: Monoterpene emissions from Scots pine and Norwegian spruce. J. Geophys. Res. 98, 2839–2850 (1993)CrossRefGoogle Scholar
  35. Kahl, J.: Labor- und Feldstudien zur Emission biogener Kohlenwasserstoffe von ausgewählten europäischen Pflanzenarten, Ph. D. Thesis, University Dortmund, Dortmund (1997)Google Scholar
  36. Kahl, J., Hoffmann, T., Klockow, D.: Differentiation between de novo synthesized and constitutively released terpenoids from Fagus sylvatica. Phytochemistry 51, 383–388, (1999)CrossRefGoogle Scholar
  37. Kempf, K., Allwine, E., Westberg, H., Claiborn, C., Lamb, B.: Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods. Atmos. Environ. 30(9), 1381–1389 (1996)CrossRefGoogle Scholar
  38. Kesselmeier, J., Schäfer, L., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Jacob, V., Denis, J., Fugit, J.L., Dutaur, L., Torres, A.L.: Emissions of monoterpenes and isoprene from a mediterranean oak species Quercus ilex L. measured within the BEMA (Biogenic Emissions in the Mediterranean Area) project. Atmos. Environ. 30 (10/11), 1841–1850 (1996)CrossRefGoogle Scholar
  39. Kesselmeier, J., Staudt, M.: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J. Atmos. Chem. 33, 23–88 (1999)CrossRefGoogle Scholar
  40. Kleffmann, J., Gavriloaiei, R., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L., Schlosser, E., Siese, M., Wahner, A.: Daytime formation of nitrous acid: a source of OH radicals in a forest. Geophys. Res. Lett. 32, L05818 (2005) doi:10.1029/2005GL022524CrossRefGoogle Scholar
  41. Komenda, M.: Investigations of the emissions of monoterpenes from Scots pine. Ph. D. Thesis, Universität Köln, Köln.(2001)Google Scholar
  42. König, G., Brunda, M., Puxbaum, H., Hewitt, C.N., Duckham, S.C., Rudolph, J.: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species. Atmos. Environ. 29(8), 861–874 (1995)CrossRefGoogle Scholar
  43. Kuhn, U., Rottenberger, S., Biesenthal, T., Ammann, C., Wolf, A., Schebeske, G., Oliva, S.T., Tavares, T.M., Kesselmeier, J.: Exchange of short-chain monocarboxylic acids by vegetation at a remote tropical forest site in Amazonia. J. Geophys. Res. 107 (2002a) doi:10.1029/2000JD000303.Google Scholar
  44. Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Brancaleoni, E., Frattoni, M., Tavares, T.M., Kesselmeier, J.: Isoprene and monoterpene emissions of Amazonian tree species during the wet season: Direct and indirect investigations on controlling environmental functions. J. Geophys. Res. 107 (2002b) doi:10.1029/2001JD000978Google Scholar
  45. Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Kesselmeier, J.: Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development. Plant Cell Environ. 27, 1469–1485 (2004)CrossRefGoogle Scholar
  46. Kuzma, J., Fall, R.: Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol. 101, 435–440 (1993)Google Scholar
  47. Lehning, A., Zimmer, I., Steinbrecher, R., Brüggemann, N., Schnitzler, J.P.,: Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ. 22, 494–505 (1999)CrossRefGoogle Scholar
  48. Lerdau, M., Gray, D.W.: Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol. 157, 199–211 (2003)CrossRefGoogle Scholar
  49. Lohmann, U., Feichter, J.: Global indirect aerosol effects: a review. ACPD 4, 7561–7614 (2004)Google Scholar
  50. Loreto, F., Ciccioli, P., Cecinato, A., Brancaleoni, E., Frattoni, M., Fabozzi, C., Tricoli, D.: Evidence of the photosynthetic origin of monoterpenes emitted by Quercus ilex L. leaves by 13C labeling. Plant Physiol. 110, 1317–1322 (1996)Google Scholar
  51. Makar, P.A., Fuentes, J.D., Wang, D., Staebler, R.M., Wiebe, H.A.: Chemical processing of biogenic hydrocarbons within and above a temperate deciduous forest. J. Geophys. Res. 104(D3), 3581–3603 (1999)CrossRefGoogle Scholar
  52. Monson, R., Harley, P., Litvak, M., Wildermuth, M., Guenther, A., Zimmerman, P., Fall, R.: Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia 99, 260–270 (1994)CrossRefGoogle Scholar
  53. Müller, J.-F.: Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J. Geophys. Res. 97(D4), 3787–3804 (1992)Google Scholar
  54. Owen, S.M., Boissard, C., Hewitt, C.N.: Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmos. Environ. 35, 5393–5409 (2001)CrossRefGoogle Scholar
  55. Parusel, E.: Zur Bedeutung von Pflanzen als Quelle leichter Nicht-Methan Kohlenwasserstoffe für die Atmosphäre. Sonderheft 167, ISSN 0376–0723, Bundesanstalt für Landwirtschaft, Braunschweig-Völkerode (1996)Google Scholar
  56. Paulson, S.E., Seinfeld, J.H.: Development and evaluation of a photooxidation mechanism for isoprene. J. Geophys. Res. 97, 20703–20715 (1992)Google Scholar
  57. Pearcy, R.W., Schulze, E.D., Zimmermann, R.: Measurement of transpiration and leaf conductance, in R.W. Pearcy, J. Ehleringer, H.A. Mooney and P.W. Rundel (eds). Plant Physiological Ecology, Chapman and Hall, London, pp. 141–142 (1989)Google Scholar
  58. Petron, G., Harley, P., Greenberg, J., Guenther, A.: Seasonal temperature variations influence isoprene emission. Geophys. Res. Lett. 28(9), 1707–1710 (2001)CrossRefGoogle Scholar
  59. Pichersky, E., Gershenzon, J.: The formation and function of plant volatiles: perfumes for pollinator attraction and defence. Curr. Op. Plant Biol. 5, 237–243 (2002)CrossRefGoogle Scholar
  60. Polster, G., Geiß, H., Heinemann, K.R.: Der meteorologische Turm der Kernforschungsanlage Jülich. Jül-2095, ISSN 0366-0885, Kernforschungsanlage Jülich GmbH, Abteilung Sicherheit und Strahlenschutz, Jülich (1986)Google Scholar
  61. Rapparini, F., Baraldi, R., Facini, O.,: Seasonal variation of monoterpene emission from Malus domestica and Prunus avium. Phytochemistry 57, 681–687 (2001)CrossRefGoogle Scholar
  62. Sabillon, D., Cremades, L.V.: Diurnal and seasonal variation of monoterpene emission rates for two typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements-relationship with temperature and PAR. Atmos. Environ. 35(26), 4419–4431 (2001)CrossRefGoogle Scholar
  63. Schnitzler, J.-P., Lehning, A., Steinbrecher, R.: Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modeling isoprene emission rates. Bot. Acta 110, 240–243 (1997)Google Scholar
  64. Schuh, G., Heiden, A.C., Hoffmann, T., Kahl, J., Rockel, P., Rudolph, J., Wildt, J.: Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity. J. Atmos. Chem. 27, 291–318 (1997)CrossRefGoogle Scholar
  65. Shao, M., Czapiewski, K.V., Heiden, A.C., Kobel, K., Komenda, M., Koppman, R., Wildt, J.: Volatile organic compound emissions from Scots pine: mechanisms and description by algorithms. J. Geophys. Res. 106(D17), 20483–20491 (2001)CrossRefGoogle Scholar
  66. Sharkey, T.D., Singsaas, E.L., Lerdau, M.T., Geron, C.D.: Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol. Appl. 9(4), 1132–1137 (1999)CrossRefGoogle Scholar
  67. Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C.N., Janson, R., Khalil, M.A.K., Owen, S., Pierce, T.E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., öquist, M.G.: Inventorying emissions from nature in Europe. J. Geophys. Res. 104, 8113–8152 (1999)CrossRefGoogle Scholar
  68. Staudt, M.: Untersuchungen der Monoterpen-Abgabe an europäischen Nadelbaumarten in abhängigkeit von umweltfaktoren. Documenta Naturae 111, ISSN 0723–8428 (1997) Ph. D. thesis, University Hohenheim, in H.J. Gregor and H.J. Unger (eds), Verlag Documenta Naturae, MünchenGoogle Scholar
  69. Staudt, M., Joffre, R., Rambal, S.: How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes. New Phytol. 158(1), 61–73 (2003)CrossRefGoogle Scholar
  70. Staudt, M., Rambal, S., Joffre, R., Kesselmeier, J.: Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J. Geophys. Res. 107(D21), 11–19 (2002)CrossRefGoogle Scholar
  71. Steele, C.L., Katoh, S., Bohlmann, J., Croteau, R.: Regulation of oleoresinosis in grand fir (Abies grandis). Plant Physiol. 116, 1497–1504 (1998)CrossRefGoogle Scholar
  72. Thompson, A.M.: The oxidizing capacity of the earth's atmosphere - probable past and future changes. Science 256, 1157–1165 (1992)CrossRefGoogle Scholar
  73. Tollsten, L., Müller, P.M.: Volatile organic compounds emitted from beech leaves. Phytochemistry 43, 759–762 (1996)CrossRefGoogle Scholar
  74. Vesala, T., Haataja, J., Aalto, P., Altimir, N., Buzorius, G., Garam, E., Hemeri, K., Ilvesniemi, H., Jokinen, V., Keronen, P., Lahti, T., Markkanen, T., Makela, J.M., Nikinmaa, E., Palmroth, S., Palva, L., Pohja, T., Pumpanen, J., Rannik, U., Siivola, E., Ylitalo, H., Hari, P., Kulmala, M.: Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat Mass Moment. Transf. 4, 17–35 (1998)Google Scholar
  75. Zhang, Q.-H., Birgersson, G., Zhu, J.-W., Löfstedt, C., Löfqvist, J., Schlyter, F.: Leaf volatiles from nonhost deciduous trees: variation by tree species, season, and temperature and electrophysiological activity in Ips typographus. J. Chem. Ecol. 25, 1923–1943 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • C. Holzke
    • 1
  • T. Dindorf
    • 2
  • J. Kesselmeier
    • 2
  • U. Kuhn
    • 2
  • R. Koppmann
    • 1
  1. 1.Institut für Chemie und Dynamik der GeosphäreInstitut II: Troposphäre, Forschungszentrum JülichJülichGermany
  2. 2.Max Planck Institute for Chemistry, Department of BiogeochemistryMainzGermany

Personalised recommendations