Journal of Atmospheric Chemistry

, Volume 51, Issue 1, pp 95–117 | Cite as

Transformation of Aerosol Chemical Properties due to Transport Over a City

  • Gerhard Lammel
  • Thomas Engelhardt
  • Adrian Leip
  • Christian Neusüß
  • Andreas Röhrl
  • Birgit Wehner
  • Alfred Wiedensohler
  • Paul Wieser
Article

Abstract

The change of the chemical composition of the near-ground level atmospheric aerosol was studied during two summer episodes by a Lagrangian type of experimental approach. Bulk and single-particle chemical analyses of ions and elements in the particulate phase were deployed. N(-III) and N(V) components were also measured in the gas-phase. The measurements were completed by particle size distributions.

Secondary inorganic aerosols (SIA) and fine particles of ≈0.2–0.4 μm size were still elevated 50 km downwind of the city. The direct comparison of transport over the city in contrast to transport over the surrounding areas showed that SIA was formed from emission from the city within less than 3 h. Relative increases, i.e., enrichment during transport were observed for primary and secondary aerosol components. The degree of mixing on the individual particle level increased significantly during transport in the area. In particular, newly emitted carbonaceous particles became internally mixed within hours with pre-existing sulphate particles. Mostly due to secondary aerosol formation the average particle size (mass median diameter) of major constituents of the aerosol was significantly decreased while being transported over 13 h. Given recent insights which link fine particles number and mass concentrations with health risks, the results suggest that rural populations in areas which frequently are located within an urban plume might run an elevated health risk relative to populations in areas not affected by urban plumes.

Key Words

aerosol size distribution secondary aerosol single particle analysis sulphur dioxide oxidation urban plume 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansmann, A., Wandinger, U., Wiedensohler, A., and Leiterer, U., 2002: Lindenberg aerosol characterization experiment 1998 (LACE 98): Overview, J. Geophys. Res. 107, 8129, doi: 10.1029/2000JD000233.CrossRefGoogle Scholar
  2. Becker, A., Scherer, B., Memmesheimer, M., and Geiß, H., 2002: Studying the city plume of Berlin on 20 July 1998 with three different modelling approaches, J. Atmos. Chem. 42, 41–70.CrossRefGoogle Scholar
  3. Behlen, A., 1996: Reaktive Stickstoffverbindungen in der Atmosphäre – Konzentrationsbestimmungen und trockene Deposition auf Natursteine, Ph.D. Thesis, Chemistry Department, University of Hamburg, Schriftenreihe Angewandte Analytik Vol. 29 (207 p.).Google Scholar
  4. Birmili, W., Stratmann, F., and Wiedensohler, A., 1999: Design of a DMA-based size spectrometer for a large particle size range and stable operation, J. Aerosol Sci. 30, 549–553.CrossRefGoogle Scholar
  5. Busch, B., Kandler, K., Schütz, L., and Neusüß, C., 2002: Hygroscopic properties and water-soluble volume fraction of atmospheric particles in the diameter range from 50 nm to 3.8 μm during LACE 98, J. Geophys. Res. 107, 8188, doi:10.1029/2000JD000228.CrossRefGoogle Scholar
  6. Dockery, D. W. and Pope, C. A., 1994: Acute respiratory effects of particulate air pollution, Annu. Rev. Public Health 15, 107–132.CrossRefPubMedGoogle Scholar
  7. Duce, R. A., Hoffman, G. L., and Zoller, W. H., 1975: Atmospheric trace metals at remote northern and southern hemisphere sites: Pollution or natural? Science 187, 339–342.Google Scholar
  8. Ebert, M., Weinbruch, S., Hoffmann, P., and Ortner, H. M., 2000: Chemical characterisation of North Sea aerosol particles, J. Aerosol Sci. 31, 613–632.CrossRefGoogle Scholar
  9. Ebert, M., Weinbruch, S., Rausch, A., Gorzawski, G., Helas, G., Hoffmann, P., and Wex, H., 2002: Complex refractive index of aerosols during LACE 98 as derived from the analysis of individual particles, J. Geophys. Res. 107, 8188, doi:10.1029/2000JD000195.CrossRefGoogle Scholar
  10. Gieray, R., Lammel, G., Metzig, G., and Wieser, P., 1993: Size dependent single particle and bulk analysis of droplets and interstitial particles in an orographic cloud, Atmos. Res. 30, 263–293.CrossRefGoogle Scholar
  11. Gieray, R., Wieser, P., Engelhardt, T., Swietlicki, E., Hansson, H. C., Mentes, B., Orsini, D., Martinsson, B., Svenningsson, B., Noone, K. J., and Heintzenberg, J., 1997: Phase partitioning of aerosol constituents in cloud based on single-particle and bulk analyses, Atmos. Environ. 31, 2491–2502.CrossRefGoogle Scholar
  12. Heintzenberg, J., Müller, K., Birmili, W., Spindler, G., and Wiedensohler, A., 1998: Mass-related aerosol properties over the Leipzig basin, J. Geophys. Res. 103, 13125–13135.CrossRefGoogle Scholar
  13. Hippeli, S. and Elstner, E. F., 1999: Transition metal ion-catalyzed oxygen activation during pathogenic processes, Fed. Eur. Biochem. Soc. Lett. 443, 1–7.Google Scholar
  14. Hughes, L. S., Allen, J. O., Kleeman, M. J., Cass, G. R., Liu, D.Y., Fergenson, D. P., Morrical, B. D., and Prather, K. A., 2000: Evolution of atmospheric particles along trajectories crossing the Los Angeles basin, Environ. Sci. Technol. 34, 3058–3068.CrossRefGoogle Scholar
  15. Israël, G. W., Erdmann, A., Shen, J., and Frenzel, W., 1992: Analyse der Herkunft und Zusammensetzung der Schwebstaubimmission, VDI Reihe 15 – Fortschritt Berichte, Vol. 92, Düsseldorf, Germany, VDI Verlag (277 pp.)Google Scholar
  16. Jaenicke, R., 1988: Aerosol physics and chemistry, Landolt-Börnstein Neue Serie 4b, 391–457.Google Scholar
  17. Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., le Tertre, A., Monopolis, Y., Rossi, G., Zmirou, D., Ballester, F., Boumghar, A., Anderson, H. R., Wojtyniak, B., Paldy, A., Braunstein, R., Pekkanen, J., Schindler, C., and Schwartz, J., 2001: Confounding and effect modification in the short-term effects of ambient particles on total mortality: Results from 29 European cities within the APHEA2 project, Epidemiology 12, 521–531.CrossRefPubMedGoogle Scholar
  18. Kerminen, V. M., Pakkanen, T. A., and Hillamo, R. E., 1997: Interactions between inorganic trace gases and supermicrometer particles at a coastal site, Atmos. Environ. 31, 2753–2765.CrossRefGoogle Scholar
  19. Kirchner, U., Vogt, R., Natzeck, C., and Goschnick, J., 2003: Single particle MS, SNMS, SIMS, XPS, and FTIR spectroscopic analysis of soot particles during the AIDA campaign, J. Aerosol Sci. 34, 1323–1346.CrossRefGoogle Scholar
  20. Kleeman, M. J., Hughes, L. S., Allen, J. O., and Cass, G. R., 1999: Source contributions to the size and composition distribution of atmospheric particles: Southern California in September, 1996, Environ. Sci. Technol. 33, 4331–4341.CrossRefGoogle Scholar
  21. Kreyling, W. G., Tuch, T., Peters, A., Pitz, M., Heinrich, J., Stölzel, M., Cyrys, J., Heyder, J., and Wichmann, H. E., 2003: Diverging long-term trends in ambient urban particle mass and number concentrations associated with emission changes caused by the German unification, Atmos. Environ. 37, 3841–3848.CrossRefGoogle Scholar
  22. Lammel, G. and Novakov, T., 1995: Water nucleation properties of mixed carbonaceous particles, Atmos. Environ. 29, 813–824.CrossRefGoogle Scholar
  23. Lammel, G., Brüggemann, E., Gnauk, T., Müller, K., Neusüß, C., and Röhrl, A., 2003a: A new method to study aerosol source contributions along the tracts of air parcels and its application to the near-ground level aerosol chemical composition in central Europe, J. Aerosol Sci. 34, 1–25.CrossRefGoogle Scholar
  24. Lammel, G.,Brüggemann, E., Müller, K., and Röhrl, A., 2003b: On the horizontal homogeneity of mass-related aerosol properties, Environ. Monit. Assess. 84, 265–273.CrossRefGoogle Scholar
  25. Lenschow, P., Abraham, H. J., Kutzner, K., Lutz, M., Preuß, J. D., and Reichenbächer, W., 2001: Some ideas about the sources of PM10, Atmos. Environ. 35, S23–S33.CrossRefGoogle Scholar
  26. Mészáros, E., Barcza, T., Gelencsér, A., Hlavay, J., Kiss, G., Krivácsy, Z., Molnár, A., and Polyák, K., 1997: Size distributions of inorganic and organic species in the atmospheric aerosol in Hungary, J. Aerosol Sci. 28, 1163–1175.CrossRefGoogle Scholar
  27. Neftel, A., Spirig, C., Prévôt, A. S. H., Furger, M., Stutz, J., Vogel, B., and Hjorth, J., 2002: Sensitivity of photooxidant production in the Milan Basin: An overview of results from a EUROTRAC-2 Limitation of Oxidant Production field experiment, J. Geophys. Res. 107, 8188, doi:10.1029/2001JD001263.CrossRefGoogle Scholar
  28. Neusüß, C., Weise, D., Birmili, W., Wex, H., Wiedensohler, A., and Covert, D. S., 2000: Size-segregated chemical, gravimetric and number distribution-derived mass closure of the aerosol in Sagres, Portugal, during ACE-2, Tellus 52B, 169–184.Google Scholar
  29. Neusüß, C., Wex, H., Birmili, W., Wiedensohler, A., Koziar, C., Busch, B., Brüggemann, E., Gnauk, T., Ebert, M., and Covert, D. S., 2002: Characterization and parameterization of atmospheric particle number-, mass-, and chemical-size distributions in central Europe during LACE 98 and MINT, J. Geophys. Res. 107, 8127, doi:10.1029/2001JD000514.CrossRefGoogle Scholar
  30. Oberdörster, G., Gelein, R., Ferrin, J., and Weiss, B., 1995: Association of particulate air pollution and acute mortality: Involvement of ultrafine particles? Inhal. Toxicol. 7, 111–124.PubMedGoogle Scholar
  31. Oberdörster, G., 2000: Toxicology of ultrafine particles: In vivo studies, Philos. Transac. R. Soc. Lond. 358A, 2719–2740.Google Scholar
  32. Pastor, S. H., Allen, J. O., Hughes, L. S., Bhave, P., Cass, G. R., and Prather, K. A., 2003: Ambient single particle analysis in Riverside, California by aerosol time-of-flight mass spectrometry during the SCOS97-NARSTO, Atmos. Environ. 37, S239–S258.CrossRefGoogle Scholar
  33. Plate, E., 2000: Variabilität der Zusammensetzung anorganischer Aerosole – insbesondere der reaktiven Stickstoffverbindungen – in küstennahen Gebieten der Nordsee und Ostsee, Ph.D. thesis, Chemistry Department, University of Hamburg, Schriftenreihe Angewandte Analytik Vol. 37 (215 pp.).Google Scholar
  34. Putaud, J. P., van Dingenen, R., Baltensperger, U., Brüggemann, E., Charron, A., Facchini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Hansson, H. C., Harrison, R. M., Jones, A. M., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Palmgren, F., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., ten Brink, H., Tunved, P., Torseth, K., Wehner, B., Weingartner, E., Wiedensohler, A., Wahlin, P., and Raes, F., 2002: A European aerosol phenomenology, European Communities, Report No. EUR20411EN, Brussels, Belgium, 55 pp.Google Scholar
  35. Rahn, K. A., 1976: Silicon and aluminum in atmospheric aerosols: Crust-air fractionation? Atmos. Environ. 10, 597–601.CrossRefGoogle Scholar
  36. Reimer, E., Scherer, B., Fath, J., and Stern, R., 2000: BERLIOZ – transport phenomena and formation of photooxidant. Poster, European Geophysical Society XXV General Assembly, Nice, 25.–29.4.2000.Google Scholar
  37. Restelli, G. and Angeletti, G. (eds.), 1993: Dimethylsulphide: Oceans, atmosphere and climate, in Proceedings of the International Symposium, Belgirate, Italy, 13.–15.10.1992, Dordrecht, The Netherlands: Kluwer (399 pp.).Google Scholar
  38. Ro, C. U., Musselman, I. H., and Linton, R. W., 1989: Molecular speciation of particles: Application of pattern-recognition techniques to LAMMS data, in P. E. Russell (ed.), Microbeam Analysis, San Francisco Press, San Francisco, pp. 293–298.Google Scholar
  39. Russell, A. G. and Cass, G. R., 1984: Acquisition of regional air quality model validation data for aerosol nitrate, sulfate, ammonium ion and their precursors, Atmos. Environ. 18, 1815–1827.CrossRefGoogle Scholar
  40. SAS, 1989: SAS/STAT users’s guide, Version 6, 4th ed., Vol. 1, Cary, USA: SAS Institute Inc. (943 pp.).Google Scholar
  41. Spindler, G., Müller, K., Brüggemann, E., Gnauk, T., and Herrmann, H., 2004: Long-term size-segregated characterization of PM10, PM2.5 and PM1 at the IfT research station Melpitz, downwind of Leipzig (Germany), Atmos. Environ. 38, 5333–5347.CrossRefGoogle Scholar
  42. Steyn, D. G., Bottenheim, J. W. R., and Thomson, B., 1997: Overview of tropospheric ozone in the lower Fraser Valley, and the Pacific ‘93 field study, Atmos. Environ. 31, 2025–2035.CrossRefGoogle Scholar
  43. Trimborn, A., Hinz, K. P., and Spengler, B., 2002: Online analysis of atmospheric particles with a transportable laser mass spectrometer during LACE 98, J. Geophys. Res. 107, 8132, doi:10.1029/2001JD000590.CrossRefGoogle Scholar
  44. Turpin, B. J. and Huntzicker, J. J., 1995: Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS, Atmos. Environ. 29, 3527–3544.CrossRefGoogle Scholar
  45. USEPA, 1996: Air Quality criteria for particulate matter, Report EPA/600//P-95/001cF, Office of Research and Development, Unites States Environmental Protection Agency, Washington.Google Scholar
  46. Vogt, R., Kirchner, U., Scheer, V., Hinz, K. P., Trimborn, A., and Spengler, B., 2003: Identification of diesel exhaust particles at an Autobahn, rural and urban location using single-particle mass spectrometry, J. Aerosol Sci. 34, 319–337.CrossRefGoogle Scholar
  47. Wichmann, H. E., Spix, C., Tuch, T., Wölke, G., Peters, A., Heinrich, J., Kreyling, W. G., and Heyder, J., 2000: Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: Role of particle number and particle mass. Research Report No. 98, Health Effects Institute, Cambridge, USA.Google Scholar
  48. Wieser, P. and Wurster, R., 1986: Application of laser microprobe mass analysis to particle collections, in K. R. Spurny (ed.), Physico-Chemical Characterization of Individual Airborne Particles, Ellis Horwood, Chichester, UK, pp. 251–280.Google Scholar
  49. Wieser, P., Schreiber, H., and Greiner, W., 1987: Quellenspezifische Merkmale partikelgebundener atmosphärischer Spurenstoffe der Luft. Vergleichende Untersuchungen mit dem Lasermikrosonden-Massenanalysator LAMMA 500 und der Röntgenfluoreszenzanalyse, Report # KfK-PEF20, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, pp. 30–36.Google Scholar
  50. Winkler, P., 1988: The growth of atmospheric aerosol particles with relative humidity, Phys. Scr. 37, 223–230.Google Scholar
  51. Winkler, P. and Kaminski, U., 1992: Formation of the physico-chemical properties of the tropospheric aerosol, Berichte der Bunsengesellschaft für Physikalische Chemie 96, 368–377.Google Scholar
  52. Wurster, R., 1997: EDX measurements on nanoparticles in a high resolution scanning electron microscope, J. Trace Microprobe Tech. 15, 467–470.Google Scholar
  53. Yamartino, R., Scire, J. S., Hanna, S., Carmichael, Y., and Chang, J. S., 1992: The CALGRID mesoscale photochemical grid model: 1. Model formulation, Atmos. Environ. 26A, 1493–1512.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Gerhard Lammel
    • 1
    • 2
  • Thomas Engelhardt
    • 3
  • Adrian Leip
    • 2
    • 6
  • Christian Neusüß
    • 4
  • Andreas Röhrl
    • 1
    • 5
  • Birgit Wehner
    • 4
  • Alfred Wiedensohler
    • 4
  • Paul Wieser
    • 3
  1. 1.Max Planck Institute for MeteorologyHamburgGermany
  2. 2.University of Hamburg, Meteorological InstituteHamburgGermany
  3. 3.University of Hohenheim, Institute for Physics and MeteorologyStuttgartGermany
  4. 4.Leibniz Institute for Tropospheric ResearchLeipzigGermany
  5. 5.University of Hamburg, Institute for Inorganic and Applied ChemistryHamburgGermany
  6. 6.Institute for the Environment and SustainabilityEC Joint Research CenterIspraItaly

Personalised recommendations