Advertisement

Journal of Atmospheric Chemistry

, Volume 51, Issue 2, pp 161–205 | Cite as

Molecular Line Parameters for the “MASTER” (Millimeter Wave Acquisitions for Stratosphere/Troposphere Exchange Research) Database

  • A. Perrin
  • C. Puzzarini
  • J.-M. Colmont
  • C. Verdes
  • G. Wlodarczak
  • G. Cazzoli
  • S. Buehler
  • J.-M. Flaud
  • J. Demaison
Article

Abstract

In order to investigate the upper troposphere/lower stratosphere (UTLS) region of the earth's atmosphere, ESA/ESTEC (European space agency) is considering the opportunity to develop the spaceborne limb sounding millimeter sensor “MASTER” (millimeter wave acquisitions for stratosphere/troposphere exchange research). This instrument is part of the “atmospheric composition explorer for chemistry and climate interactions” (ACECHEM) project. In addition, ESA/ESTEC is developing the “MARSCHALS” (millimeter-wave airborne receiver for spectroscopic characterization of atmospheric limb sounding) airborne instrument which will demonstrate the feasibility of MASTER. The present paper describes the line-by-line database which was generated in order to meet at best the needs of the MASTER (or MARSCHALS) instrument. The linelist involves line positions, line intensities, line broadening and line shift parameters in the 294–305, 316–325, 342–348, 497–506 and 624–626 GHz spectral microwindows. This database was first generated for the target molecules for MASTER (H2O, O3, N2O, CO, O2, HNO3, HCl, ClO, CH3Cl, BrO). In addition, ten additional molecules (SO2, NO2, OCS, H2CO, HOCl, HCN, H2O2, COF2, HO2 and HOBr) had also to be considered in the database as “possible interfering species” for the retrieval of the target molecules of MASTER. The line parameters were derived, depending on their estimated accuracy, (i) from a combination of spectral parameters included in the JPL and HITRAN catalogs (ii) from data taken into the literature or (iii) using data obtained through experimental measurements (and/or) calculations performed during the present study.

Key words

broadening coefficients millimeter and submillimeter spectral domains line intensities line positions spectroscopic database 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, T., Yoshinaga, A., and Hirota, E., 1972: Microwave spectrum of the BrO radical equilibrium structure and dipole moment, J. Mol. Spectrosc. 44, 594–598.CrossRefGoogle Scholar
  2. Amano, T. and Hirota, E., 1974: Microwave spectrum of the molecular oxygen in the excited vibrational state, J. Mol. Spectrosc. 53, 346–363.CrossRefGoogle Scholar
  3. De Backer-Barilly, M. R. and Barbe, A., 2001: Absolute intensities of the 10 μm bands of 16O3, J. Mol. Spectrosc. 205, 43–53.CrossRefPubMedGoogle Scholar
  4. Bakri, B., Colmont, J.-M., Rohart, F., and Wlodarczak, G., 2002: K-dependence of pressure broadening coefficients in symmetric top molecules: Cases of 12CH335Cl and 12CH3C14N, Poster J32, “The 17th International Conference on High Resolution Molecular Spectroscopy'', Prague, Sept 1–5 (2002).Google Scholar
  5. Ballard, J., Johnston, W. B., Moffat, P. H., and Llewellyn-Jones, D. T., 1985: Experimental determination of the temperature dependence of nitrogen broadened line widths in the 1 ← 0 band of HCl, J. Quant. Spectrosc. Radiat. Transfer. 33, 365–371.CrossRefGoogle Scholar
  6. Baron, P., Ricaud, P., de La Noë, J., Eriksson, J. E. P., Merino, F., Ridal, M., and Murtagh, D., 2002: Studies for the Odin Sub-Millimeter Radiometer: II. Retrieval methodology, Can. J. Phys., 80, 341–356.CrossRefGoogle Scholar
  7. Bauer, A., Godon, M., and Duterage, B., 1985: Self- and air-broadened linewidths of the 183 GHz absorption in water vapor, J. Quant. Spectrosc. Radiat. Transfer. 33, 167–175.CrossRefGoogle Scholar
  8. Bauer, A., Duterage, B., and Godon, M., 1986: Temperature dependence of water-vapor absorption in the wing of the 183 GHz line, J. Quant. Spectrosc. Radiat. Transfer. 36, 307–318.CrossRefGoogle Scholar
  9. Bauer, A., Godon, M., Kheddar, M., Hartmann, J.-M., Bonamy, J., and Robert, D. 1987: Temperature and perturber dependences of water-vapor 380 GHz-line broadening, J. Quant. Spectrosc. Radiat. Transfer. 37, 531–539.CrossRefGoogle Scholar
  10. Bauer, A., Godon, M., Kheddar, M., and Hartmann, J.-M., 1989: Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz, calculations below 1000 GHz, J. Quant. Spectrosc. Radiat. Transfer. 41, 49–54.CrossRefGoogle Scholar
  11. Bauer, A. and Godon, M., 1991: Temperature dependence of water-vapor absorption in linewings at 190 GHz, J. Quant. Spectrosc. Radiat. Transfer. 46, 211–220.CrossRefGoogle Scholar
  12. Bauer, A., Godon, M., Carlier, J., Ma, Q., and Tipping, R. H., 1993: Absorption by H2O and H2O–N2 mixtures at 153 GHz, J. Quant. Spectrosc. Radiat. Transfer. 50, 463–475.CrossRefGoogle Scholar
  13. Bauer, A., Godon, M., Carlier, J., and Ma, Q., 1995: Water vapor absorption in the atmospheric window at 239 GHz, J. Quant. Spectrosc. Radiat. Transfer. 53, 411–423.CrossRefGoogle Scholar
  14. Bauer, A., Birk, M., Wagner, W., Colmont, J.-M., Priem, D., Wlodarczak, G., Buehler, S., Von Engeln, A., Künzi, K., and Perrin, A., 1998a: Study on a spectroscopic database for millimeter and submillimeter wavelength, Final Report of ESA N11581/95/NL/CN (1998).Google Scholar
  15. Bauer, A., Godon, M., Carlier, J., and Gamache, R. R., 1998b: Continuum in the windows of the water vapor spectrum. Absorption of H2O-Ar at 239 GHz and linewidth calculations, J. Quant. Spectrosc. Radiat. Transfer. 59, 273–285.CrossRefGoogle Scholar
  16. Benner, D., Malathy, Ch., Devi, V., Blake, T. A., Brown, L. R., Toth, R. A., and Smith, M. A. H., 2004: Air broadening parameters in the υ3 band of 14N16O2 using a multispectrum fitting technique. RB06, 59th Ohio State International Symposium on Molecular Spectroscopy, Ohio (2004).Google Scholar
  17. De Bievre, P., Holden, N. E., and Barnes, I. L., 1984: Isotopic abundances and atomic weights of the elements, J. Phys. Chem. Ref. Data 13, 809–891.Google Scholar
  18. Birk, M., Wagner, W., Flaud, J.-M., and Hausamann, D., 1994a: Linestrengths in the ν33 hot band of ozone, J. Mol. Spectrosc. 163, 262–275.CrossRefGoogle Scholar
  19. Birk, M., Wagner, W., and Flaud, J.-M., 1994b: Experimental linestrengths of far-infrared pure rotational transitions of ozone, J. Mol. Spectrosc. 163, 245–261.CrossRefGoogle Scholar
  20. Birk, M., Colmont, J.-M., Priem, D., Wagner, W., and Wlodarczak, G., 1997: Fifteenth Colloquium on High Resolution Molecular Spectroscopy, Glasgow, Scotland, 7–11 September 1997, Poster F4, (1997): N2, O2, and Air-Broadening Coefficients of the J=3–2 line of CO and the J=342, 32–341,33 line of O3, Measured with two Techniques: Tunable Microwave Source and Fourier Transform Spectroscopy (F4).Google Scholar
  21. Blanquet, G., Walrand, J., and Bouanich, J.-P., 1993a: Diode laser measurements of O2-broadening in the ν3 band of CH335Cl, J. Mol. Spectrosc. 159, 137–143.CrossRefGoogle Scholar
  22. Blanquet, G., Walrand, J., and Bouanich, J.-P., 1993b: Diode laser measurements of N2-broadening in the ν3 band of CH335Cl, J. Mol. Spectrosc. 160, 253–257.CrossRefGoogle Scholar
  23. Bocquet, R., Demaison, J., Poteau, L., Liedtke, M.. Belov, S., Yamada, K. M. T., Winnewisser, G., Gerke, C., Gripp, J., and Köhler, Th., The Ground State Rotational Spectrum of Formaldehyde, 1996: Mol. Spectrosc. 177, 154–159.CrossRefGoogle Scholar
  24. Bouanich, J.-P., Walrand, J., Alberty, S., and Blanquet, G., 1987: Laser Measurements of Oxygen-Broadened line widths in the ν1 Band of OCS, J. Mol. Spectrosc. 123, 37–47.CrossRefGoogle Scholar
  25. Bouanich, J.-P., Blanquet, G., and Walrand, J., 1993: Theoretical O2- and N2-broadening coefficients for methyl chloride spectral lines, J. Mol. Spectrosc. 161, 416–426.CrossRefGoogle Scholar
  26. Bouanich, J.-P., Blanquet, G., Populaire, J. C., and Walrand, J., 2001: Broadening for methyl chloride at low temperature by diode laser spectroscopy, J. Mol. Spectrosc. 208, 72–78.CrossRefPubMedGoogle Scholar
  27. Brown, J. M., Byfleet, C. R., Howard, B. J., and Russell, D. K., 1972: The electron spectrum of the BrO radical equilibrium structure and dipole moment, Mol. Phys. 23, 457–468.Google Scholar
  28. Brown, L., Farmer, C. B., Rinsland, C. P., and Toth, R. A., 1987: Molecular line parameters for the Atmospheric Molecule Trace Spectroscopy experiment, Appl. Opt. 26, 5154–5182.Google Scholar
  29. Brown, L. R. and Plymate, J., 1996: H2-Broadened H216O in four infrared bands between 55 and 4045 cm-1, J. Quant. Spectrosc. Radiat. Transfer 56, 263–282.CrossRefGoogle Scholar
  30. Buehler, S. A., Eriksson, P., Kuhn, T., van Engeln, A., and Verdes, C. L., 2004: ARTS, the Atmospheric Radiative Transfer Simulator, J. Quant. Spectrosc. Radiat. Transfer. 91, 65–93.CrossRefGoogle Scholar
  31. Burkholder, J. B., Hammer, P. D., Howard, C. J., Maki, A. G., Thompson, G., and Chackerian, C., 1987: Infrared measurements of the ClO radical, J. Mol. Spectrosc. 124, 139–161.CrossRefGoogle Scholar
  32. Butler, J. E., Kawaguchi, K., and Hirota, E., 1984: Infrared diode laser spectroscopy of the BrO radical, J. Mol. Spectrosc. 104, 372–379.CrossRefGoogle Scholar
  33. Carpenter, J. H., 1974: The microwave spectrum and structure of carbonyl fluoride, J. Mol. Spectrosc. 50, 182–201.CrossRefGoogle Scholar
  34. Carpenter, J. H. and Seo, P., 1985: The millimeter-wave spectrum of methyl chloride, J. Mol. Spectrosc. 113, 355–361.CrossRefGoogle Scholar
  35. Cazzoli, G. and De Lucia, F. C., 1979: Millimeter wave spectrum of HNO3, J. Mol. Spectrosc. 76, 131–141.CrossRefGoogle Scholar
  36. Cazzoli, G., Degli Esposti, C., Favero, P. G., and Severi, G., 1981: Microwave spectra of 16O17O and 18O16O, Nuovo Cimento-B 62B, 243–254.Google Scholar
  37. Cazzoli, G., Dore, L., Puzzarini, C., and Beninati, S., 2002a: Millimeter- and submillimeter-wave spectrum of C17O. Rotational hyperfine structure analyzed using the Lamb-dip technique, Phys. Chem. Chem. Phys. 4, 3575–3577.CrossRefGoogle Scholar
  38. Cazzoli, G., Dore, L., Cludi, L., Puzzarini, C., and Beninati, S., 2002b: Hyperfine structure of the J=1←0 transition of 13CO, J. Mol. Spectrosc. 215, 160–162.CrossRefGoogle Scholar
  39. Cazzoli, G. and Puzzarini, C., 2004: Hyperfine structure of the J=1←0 transition of H35Cl and H37Cl, J. Mol. Spectrosc. 226, 161–168.CrossRefGoogle Scholar
  40. Cazzoli, G., Dore, L., Puzzarini, C., Bakri, B., Colmont, J.-M., Rohart, F., Wlodarczak, 2005: Experimental determination of air-broadening parameters of pure rotational transitions of HNO3: intercomparison of measurements by using different techniques, J. Mol. Spectrosc. 229, 158–169.CrossRefGoogle Scholar
  41. Chackerian, C., Goorvitch, D., and Giver, L. R., 1985: HCl vibrational fundamental band: line intensities and temperature dependence of self-broadening coefficients, J. Mol. Spectrosc. 113, 373–387.CrossRefGoogle Scholar
  42. Chance, K., Jucks, K. W., Johnson, D. G., and Traub, W. A., 1994a: The Smithsonian Astrophysical Observatory Database SAO92, J. Quant. Spectrosc. Radiat. Transfer 52, 447–457.CrossRefGoogle Scholar
  43. Chance, K., DeNatale, P., Bellini, M., Inguscio, M., DiLonardo, G., and Fusina, L., 1994b: Pressure broadening of the 2.4978 THz rotational lines of HO2 by N2 and O2, J.Mol. Spectrosc. 163, 67–70.CrossRefGoogle Scholar
  44. Claveau, C., Camy-Peyret, C., Valentin, A., and Flaud, J.-M., 2001: Absolute intensities of the ν1 and ν3 bands of 16O3, J. Mol. Spectrosc. 206, 115–125.CrossRefPubMedGoogle Scholar
  45. Cohen, E. A., Pickett, H. M., and Geller, M., 1981: The rotational spectrum and molecular parameters of BrO in the 2Π3/2 state, J. Mol. Spectrosc. 87, 459–470.CrossRefGoogle Scholar
  46. Cohen, E. A., Pickett, H. M., and Geller, M., 1984: The submillimeter spectrum of ClO, J. Mol. Spectrosc. 106, 430–435.CrossRefGoogle Scholar
  47. Cohen, E. A. and Lewis-Bevin, W., 1991: Further measurements of the rotational spectrum of COF2: Improved molecular constants for the ground and ν2 states, J. Mol. Spectrosc. 148, 378–384.CrossRefGoogle Scholar
  48. Colmont, J.-M. and Semmoud-Monnanteuil, N., 1987: Pressure broadening of the N2O J=9←8 rotational transition by N2O, N2 and O2, J. Mol. Spectrosc. 126, 240–242.CrossRefGoogle Scholar
  49. Colmont, J.-M., Priem, D., Wlodarczak, G., and Gamache, R. R., 1999: Measurements and calculations of the halfwidth of two rotational transitions of water vapor perturbed by N2, O2, and air, J. Mol. Spectrosc. 193, 233–243.CrossRefPubMedGoogle Scholar
  50. Colmont, J.-M., Bakri, B., Rohart, F., and Wlodarczak, G., 2003: Experimental determination of pressure broadening parameters of millimeter wave transitions of HNO3 perturbed by N2 and O2 and their temperature dependences, J. Mol. Spectrosc. 220, 52–57.CrossRefGoogle Scholar
  51. Coudert, L. H., 1994: Analysis of the rotational energy levels of water and determination of the potential energy function for the bending ν2 mode, J. Mol. Spectrosc. 165, 406–425.CrossRefGoogle Scholar
  52. Coudert, L. H., 1999: Line frequency and line intensity analyses of water vapor, Mol. Phys. 96, 941–954.CrossRefGoogle Scholar
  53. Cox, A. P. and Riveros, J. M., 1965: Microwave spectrum and structure of nitric acid, J. Chem. Phys. 42, 3106–3112.CrossRefGoogle Scholar
  54. Crownover, R. L., Booker, R. A., De Lucia, F. C., and Helminger, P., 1988: The rotational spectrum of nitric acid: The first five vibrational states, J. Quant. Spectrosc. Radiat. Transfer 40, 39–46.CrossRefGoogle Scholar
  55. Crownover, R. L., De Lucia, F. C., and Herbst, E., 1990: The submillimeter-wave spectrum of 16O18O, Astrophys. J. Lett. 349, L29–31.CrossRefGoogle Scholar
  56. De La Noë, J., Lezeaux, O., Guillemin, G., Lauqué, R., Baron, P., and Ricaud, Ph., 1998: A ground-based microwave radiometer dedicated to stratospheric ozone monitoring, J Geophys Res. D103, 22147–22161.CrossRefGoogle Scholar
  57. DeLeeuw, F. H. and Dymanus, A., 1973: Magnetic properties and molecular quadrupole moment of HF and HCl by molecular beam electronic resonance spectroscopy, J. Mol. Spectrosc. 48, 427–445.CrossRefGoogle Scholar
  58. De La Noë, J., Baudry, A., Monnanteuil, N., Colmont, J.-M., and Dierich, P., 1983: Millimeter wavelength ground based observations of two minor constituents of the atmosphere, C.R.A.S., Serie A, 296, 1243–1248.Google Scholar
  59. De Lucia, F. C., Cook, R. L., Helminger, P., and Gordy, W., 1971: Millimeter and submillimeter wave rotational spectrum and centrifugal distortion effects of HDO, J. Chem. Phys. 55, 5334–5339.CrossRefGoogle Scholar
  60. De Lucia, F. C., Helminger, P., Cook, R. L., and Gordy, W., 1972a: Submillimeter microwave spectrum of H218O, Phys. Rev. A6, 1324–1326.Google Scholar
  61. De Lucia, F. C., Helminger, P., Cook, R. L., and Gordy, W., 1972b: Submillimeter microwave spectrum of H216O, Phys. Rev. A5, 487–490.Google Scholar
  62. De Lucia, F. C., Helminger, P., and Kirchhoff, W. H., 1974: Microwave spectra of molecules of astrophysical interest. V. Water vapour, J. of Phys. and Chem. Ref. Data 3, 211–219.Google Scholar
  63. De Lucia, F. C. and Helminger, P., 1975: Microwave spectrum and ground state energy levels of H217O, J. Mol. Spectrosc. 56, 138–145.CrossRefGoogle Scholar
  64. Demaison, J., Bocquet, R., Chen, W. D., Papousek, D., Boucher, D., and Bürger, H., 1994: The far-infrared spectrum of methyl chloride: Determination and order of magnitude of the sextic centrifugal distortion constants in symmetric tops, J. Mol. Spectrosc. 166, 147–157.CrossRefGoogle Scholar
  65. Demaison, J., Buehler, S., Koulev, N., Kuhn, T., Verdes, C., Cazzoli, G., Dore, L., Puzzarini, C., Flaud, J.-M., Perrin, A., Bakri, B., Colmont, J.-M., Rohart, F., and Wlodarczak, G., 2004: Characterisation of Millimeter wave spectroscopic signatures, ESTEC contract n 16377/02/NL/FF, (2004).Google Scholar
  66. Depannemaecker, J. C. and Bellet, J., 1977: Rotational spectra of the 16O3 and of the five 18O isotopic species, J. Mol. Spectrosc. 66, 106–120.CrossRefGoogle Scholar
  67. Depannemaecker, J. C. and Lemaire, J., 1988: Measurement with a double-beam spectrometer of strengths and half-widths of 2ν2 and 3ν22 OCS Lines, J. Mol. Spectrosc. 128, 350–359.CrossRefGoogle Scholar
  68. De Valk, P., Chipperfield, M., Crewell, S., Franke, B., Goede, A., de Jonge, A., Küllmann, H., Lee, A., Mees, J., Urban, J., and Wohlgemuth, J., 1997: Airborne heterodyne measurements of stratospheric ClO, Hcl; O3 and N2O during SESAME-I over Northern Europe, J Geophys. Res. D102, 1391–1398.CrossRefGoogle Scholar
  69. Dicke, R. H., 1953: The effect of collisions upon the doppler width of spectral lines, Phys. Rev. 89, 472–473.CrossRefGoogle Scholar
  70. Drouin, B. J., Miller, C. E., Müller, H. S. P., and Cohen, E. A., 2001a: The rotational spectra, isotopically independent parameters, and interatomic potentials for the X12Π3/2 and X22Π3/2 states of BrO, J. Mol. Spectrosc. 205, 128–138.CrossRefGoogle Scholar
  71. Drouin, B. J., Miller, C. E., Cohen, E. A., Wagner, W., and Birk, M., 2001b: Further investigations of the ClO rotational, J. Mol. Spectrosc. 207, 4–9.CrossRefGoogle Scholar
  72. Drouin, B. J., 2004a: Temperature dependent pressure-induced lineshape of the HCl J=1←0 rotational transition in nitrogen and oxygen, J. Quant. Spectrosc. Radiat. Transfer. 83, 321–331.CrossRefGoogle Scholar
  73. Drouin, B. J., Gamache, R. R., and Fischer, J., 2004b: Temperature dependent pressure induced lineshape of O3 rotational transitions in air, J. Quant. Spectrosc. Radiat. Transfer 83, 63–81.CrossRefGoogle Scholar
  74. Eluszkiekicz, E., Crisp, D., Zurek, R., Elson, L., Fishbein, E., Froidevaux, L., Waters, J., Grainger, R. G., Lambert, A., Harwood, R., and Peckham G., 1996: Residual circulation in the stratosphere and lower mesosphere as diagnosed from Microwave Limb Sounder data, J. of the Atmosph. Sciences 53, 217–240.CrossRefGoogle Scholar
  75. Eriksson, P., Merino, F., Murtagh, D., Baron, P., Ricaud, P., and de La Noë, J., 2002: Studies for the Odin Sub-Millimeter Radiometer: I. Radiative transfer and instrument simulation, Can. J. Phys., 80, 321–340.CrossRefGoogle Scholar
  76. Fabricant, B., Krieger, D., and Muenter, J. S., 1977: Molecular beam electric resonance study of formaldehyde, thioformaldehyde and ketene, J. Chem. Phys. 67, 1576–1586.CrossRefGoogle Scholar
  77. Fischer, J., Gamache, R. R., Goldman, A., Rothman, L. S., and Perrin, A., 2003: Total internal partition sums for molecular species in the 2000 edition of the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer 82, 401–412.CrossRefGoogle Scholar
  78. Flaud, J.-M., Camy-Peyret, C., and Toth, R. A., 1981: Water vapour line parameters from microwave to medium infrared, an atlas of H216O, H217O and H218O line positions and intensities between 0 and 4350 cm-1, Pergamon Press, Oxford (UK).Google Scholar
  79. Flaud, J.-M., Camy-Peyret, C., Rinsland, C. P., Smith, M. A. H., and Malathy Devi, V., 1990a: Atlas of ozone spectral parameters from microwave to medium infrared, Academic Press Inc., Cambridge, Massachusetts.Google Scholar
  80. Flaud, J.-M., Camy-Peyret, C., Rinsland, C. P., Malathy Devi, V., Smith, M. A. H., and Goldman, A., 1990b: Improved line parameters for ozone bands in the 10 μm spectral region, Appl. Opt. 29, 3667–3671.Google Scholar
  81. Flaud, J.-M., and Bacis, R., 1998a: The ozone molecule: Infrared and microwave spectroscopy, Spectrochimica Acta 54A, 3–16.Google Scholar
  82. Flaud, J.-M., Birk, M., Wagner, W., Orphal, J., Klee, S., Lafferty, W. J., 1998b: The far infrared spectrum of HOCl: line positions and intensities, J. Mol. Spectrosc. 191, 362–367.CrossRefGoogle Scholar
  83. Flaud, J.-M., Wagner, W., Birk, M., Camy-Peyret, C., Claveau, C., De Backer-Barilly, M. R., Barbe, A., and Piccolo, C., 2003a: Ozone absorption around 10 μm, J. Geophys. Res. D108, doi:10.1029/2002JD002755.Google Scholar
  84. Flaud, J.-M., Piccolo, C., Carli, B., Perrin, A., Coudert, L. H., Teffo, J.-L., and Brown, L., 2003b: Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment, J. of Atmos. Ocean and Optics 16, 172–182.Google Scholar
  85. Galatry, R., 1961: Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev. 122, 1218–223.CrossRefGoogle Scholar
  86. Gamache, R. R. and Davies, R. W., 1983: Theoretical calculation of molecular nitrogen broadened halfwidths of water using quantum Fourier theory, Appl. Opt. 22, 4013–4019.Google Scholar
  87. Gamache, R. R., Hartmann, J.-M., and Rosenmann, L., 1994: Collisional broadening of water vapor lines-I. A survey of experimental results, J. Quant. Spectrosc. Radiat. Transfer 52, 481–499.CrossRefGoogle Scholar
  88. Gamache, R. R., Lynch, R., and Neshyba, S. P., 1998: New Developments in the Theory of Pressure-Broadening and Pressure-Shifting of Spectral Lines of H2O: The Complex Robert-Bonamy Formalism, J. Quant. Spectrosc. Radiat. Transfer 59, 319–335.CrossRefGoogle Scholar
  89. Gamache, R. R. and Fischer, J., 2003a: Half-widths of H216O, H218O, H217O HD16O and D216O: I. Comparaison between isotopomers, J. Quant. Spectrosc. Radiat. Transfer 78, 289–304.CrossRefGoogle Scholar
  90. Gamache, R. R. and Fischer, J., 2003b: Half-widths of H216O, H218O, H217O, HD16O and D216O: II Comparison with measurements, J. Quant. Spectrosc. Radiat. Transfer 78, 305–318.CrossRefGoogle Scholar
  91. Gamache, R. R. and Hartmann, J.-M., 2004: Collisional parameters of H2O lines: effects of vibration, J. Quant. Spectrosc. Radiat. Transfer 83, 119–147.CrossRefGoogle Scholar
  92. Gillis, H. E., Singbeil, D., Anderson, W. D., Wellington Davis, R., Gerry, M. C. L., Cohen, E. A., Pickett, H. M., Lovas, F. J., and Suenram, R. D., 1984: The microwave and millimeter-wave spectra of hypochlorous acid, J. Mol. Spectrosc 103, 466–485.CrossRefGoogle Scholar
  93. Godon, M., Carlier, J., and Bauer, A., 1992: Laboratory studies of water vapor absorption in the atmosphere window at 213 GHz, J. Quant. Spectrosc. Rad. Transfer 47, 275–285.CrossRefGoogle Scholar
  94. Golubiatnikov, G., and Krupnov, A. F., 2003: Microwave study of the rotational spectrum of oxygen molecule in the range up to 1.12 THz, J. Mol. Spectrosc. 217, 282–287.CrossRefGoogle Scholar
  95. Goyette, T. M., Ebenstein, W. L., De Lucia, F. C., and Helminger, P., 1988a: Pressure broadening of the millimeter and submillimeter wave spectra of nitric acid by oxygen and nitrogen, J. Mol. Spectrosc. 128, 108–116.CrossRefGoogle Scholar
  96. Goyette, T. M., Ebenstein, W. L., Shostak, S. L., De Lucia, F. C., and Helminger, P., 1988b: Pressure broadening of NO2, CF2Cl2, HDO and HOOH by O2 and N2 in the millimeter wave region, J. Quant. Spectrosc. Radiat. Transfer 40, 129–134.CrossRefGoogle Scholar
  97. Goyette, T. M., and De Lucia, F. C., 1990: The temperature broadening of the 31,3-22,0 transition of water (183 GHz) between 80 and 600 K, J. Mol. Spectrosc. 183, 346–358.CrossRefGoogle Scholar
  98. Goyette, T. M., Guo, W., De Lucia, F. C., and Helminger, P., 1991: Variable temperature pressure broadening of HNO3 in the millimeter wave spectral region, J. Quant. Spectrosc. Radiat. Transfer 46, 293–297.CrossRefGoogle Scholar
  99. Goyette, T. M., De Lucia, F. C., Dutta, J. M., and Jones, C. R., 1993a: Variable temperature pressure broadening of the 41,4-32,1 transition of water (380 GHz) by O2 and N2, J. Quant. Spectrosc. Radiat. Transfer 49, 485–489.CrossRefGoogle Scholar
  100. Goyette, T. M., Fergusson, D. W., De Lucia, F. C., Dutta, J. M., and Jones, C. R., 1993b: The pressure broadening of HDO by O2, N2 and H2 between 100 and 600 K, J. Mol. Spectrosc. 162, 366–374.CrossRefGoogle Scholar
  101. Goyette, T. M., Oesterling, L. C., Petkie, D. T., Booker, R. A., Helminger, P., and De Lucia, F. C., 1996: Rotational spectrum of HNO3 in the ν5 and 2ν9 vibrational states, J. Mol. Spectrosc. 175, 395–410.CrossRefGoogle Scholar
  102. Goyette, T. M., Cohen, E. A., and De Lucia, F. C., 1998: Pressure broadening of HNO3 by N2 and O2: an intercomparison in the millimeter wave spectral range, J. Quant. Spectrosc. Radiat. Transfer 60, 377–384.CrossRefGoogle Scholar
  103. Harde, H., Katzenellenbogen, N., and Grischkowsky, D., 1994: Terahertz coherent transients from methyl chloride vapor, J. of Opt. Soc. of Am. B11, 1018–1030.Google Scholar
  104. Harde, H., Cheville, R. A., and Grischkowsky, D., 1997a: Terahertz coherent transients from methyl chloride vapor, J. of Opt. Soc. of Am. B14, 3282–3293.Google Scholar
  105. Harde, H., Cheville, R. A., and Grischkowsky, D., 1997b: Terahertz studies of collision broadened rotational lines, J. Phys. Chem. A101, 3646–3660.Google Scholar
  106. Houdeau, J. P., Larvor, M., and Haeusler, C., 1980: Etude à basse température des largeurs et des déplacements des raies rovibrationnelles de la bande de H35Cl comprimé par N2, O2, D2 and H2, Can. J. Phys. 58, 318–324 (1980).Google Scholar
  107. Kaiser, E. W., 1970: Dipole moment and hyperfine parameters of H35Cl and D35Cl, J. Chem. Phys. 53, 1686–1703.CrossRefGoogle Scholar
  108. Klapper, G., Lewen, F., Gendriesch, R., Belov, S. P., and Winnewisser, G., 2000a: Sub-Doppler measurements of the rotational spectrum of 13C16O, J. Mol. Spectrosc. 201, 124–127.CrossRefGoogle Scholar
  109. Klapper, G., Lewen, F., Belov, S. P., and Winnewisser, G., 2000b: Sub-Doppler measurements and rotational spectrum of 13C18O, Z. Naturforsch. 55A, 441–443.Google Scholar
  110. Klapper, G., Lewen, F., Gendriesch, R., Belov, S. P., and Winnewisser, G., 2001: Sub-Doppler measurements and terahertz rotational spectrum of 12C18O, Z. Naturforsch. 56A, 329–332.Google Scholar
  111. Klaus, Th., Belov, S. P., and Winnewisser, G., 1998: Precise measurement of the pure rotational submillimeter-wave spectrum of HCl and DCl in their v=0, 1 states, J. Mol. Spectrosc. 187, 109–117.CrossRefPubMedGoogle Scholar
  112. Kleiner, I., Godefroid, M., Herman M., and Mc Kellar, A. R. W., 1987: Infrared laser Stark spectrum of HNO3 at 6 μm, J. of the Opt. Soc. of Am. B4, 1159–1164.Google Scholar
  113. Koga, Y., Takeo, H., Kondo, S., Sugie, M., Matsumura, C., McRae, G. A., Cohen, E. A., 1989: The rotational spectra, molecular structure, dipole moment, and hyperfine constants of HOBr and DOBr, J. Mol. Spectrosc. 138, 467–481.CrossRefGoogle Scholar
  114. Krupnov, A. F., Golubiatnikov, G.Yu., Marlov V. N., and Sergeev, D. A., Pressure broadening of the rotational line of oxygen at 425 GHz, 2002: J. Mol. Spectrosc. 215, 309–311.Google Scholar
  115. Krupenie, P. H., 1972: The spectrum of molecular oxygen, J. Phys. Chem. Ref. Dat. 1, 423–534.Google Scholar
  116. Kuhn, T., Bauer, A., Godon, M., Buehler. S., and Kunzi, K., 2002: Water vapor continuum: absorption measurements at 350 GHz and model calculations, J. Quant. Spectrosc. Radiat. Transfer 74, 545–562.CrossRefGoogle Scholar
  117. Lacome, N., Levy, A., and Boulet, Ch., 1983: Air-broadened linewidths of nitrous oxide: an improved calculation, J. Mol. Spectrosc. 97, 139–153.CrossRefGoogle Scholar
  118. Lahoz, W. A., O'Neill, A., Carr, E. S., Harwood, R. S., Froidevaux, L., Read, W. G., Waters, J. W., Kumer, J. B., Mergenthaler, J. L., Roche, A. E., Peckham, G. E., and Swinbank, R., 1994: Three-dimensional evolution of water vapor distributions in the northern hemisphere stratosphere as observed by the MLS, J. of the Atm. Science 51, 2914–2930.CrossRefGoogle Scholar
  119. Lanquetin, R., Coudert, L. H., and Camy-Peyret, C., 1999: High-lying rotational levels of water: comparison of calculated and experimental energy levels for (000) and (010) up to J=25 and 21, J. Mol. Spectrosc. 195, 54–67.CrossRefPubMedGoogle Scholar
  120. Lanquetin, R., Coudert, L. H., and Camy-Peyret, C., 2001: High-lying rotational levels of water: an analysis of the energy levels of the five first vibrational states, J. Mol. Spectrosc. 196, 83–103.CrossRefGoogle Scholar
  121. Larsen, R. W., Nicolaisen, F. M., and Sø rensen, G. O., 2001: Determination of self-air and oxygen broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependencies, J. Mol Spectrosc. 210, 259–270.CrossRefGoogle Scholar
  122. Laurie, V. W., and Pence, D. T., 1962: Microwave spectrum structure and dipole moment of carbonyl fluoride, J. Chem. Phys. 37, 2995–2999.CrossRefGoogle Scholar
  123. Lemaire, V., Babay, A., Lemoine, C., Rohart, F., and Bouanich, J.-P., 1996: Self- and foreign-gas-broadening and shifting of lines in the ν2 band of HCN, J. Mol. Spectrosc. 177, 40–45.CrossRefGoogle Scholar
  124. Liebe, H. J., 1984: The atmospheric water vapor continuum below 300 GHz., International Journal of Infrared and Millimeter Waves 5, 207–227.CrossRefGoogle Scholar
  125. Liebe, H. J., 1985: An updated model for millimeter wave propagation in moist air, Radio Science 20, 1069–1089.Google Scholar
  126. Liebe, H. J., 1989: MPM an atmospheric millimeter-wave propagation model, International Journal of Infrared and Millimeter Waves 10, 631–650.CrossRefGoogle Scholar
  127. Liebe, H. J., Rosenkranz, P. W., and Hufford, G. A., 1992: Atmospheric 60 GHz oxygen spectrum: new laboratory measurements and line parameters, J. Quant. Spectrosc. Radiat. Transfer 48, 629–643.CrossRefGoogle Scholar
  128. Livesey, N. J., Read, W. G., Froidevaux, L., Waters, J. W., Santee, M. L., Pumphrey, H. C., Wu, D. L., Shippony, Z., and Jarnot, R. F., 2003: The UARS Microwave Limb Sounder version 5 data set: Theory, characterization, and validation, J. Geophys. Res. D108, doi:10.1029/2002JD002273.Google Scholar
  129. Lovas, F. J., 1978: Microwave spectral tables. II. Triatomic molecules, J. Phys. Chem. Ref. Data 7, 1445–1750.Google Scholar
  130. Lovas, F. J., 1985: Microwave spectra of molecules of astrophysical interest. XXII. Sulfur dioxide (SO2), J. Phys. Chem. Ref. Data 14, 395–488.Google Scholar
  131. Lovas, F. J., 2004: NIST recommended rest frequencies for observed interstellar molecular microwave Transitions-2002 revision, J. Phys. Chem. Ref. Data 33, 177–355.CrossRefGoogle Scholar
  132. Lyulin, O. M., Perevalov, V. I., and Teffo, J.-L., 1995: Effective dipole moment and band intensities of nitrous oxide, J. Mol. Spectrosc. 174, 566–580.Google Scholar
  133. Ma, Q. and Tipping, R. H., 1990: Water vapor continuum in the millimeter spectral region, J. Chem. Phys. 93, 6127–6139.CrossRefGoogle Scholar
  134. Ma, Q. and Tipping, R. H., 1992: A far wing line shape theory and its applications to the foreign broadened water continuum absorption, J. Chem Phys. 97, 818–828.CrossRefGoogle Scholar
  135. Ma, Q. and Tipping, R. H., 2002: Water vapor millimeter wave foreign continuum: a Lanczos calculation in the coordinate representation, J. Chem. Phys. 117, 10581–10596.CrossRefGoogle Scholar
  136. Malathy Devi, V., Rinsland, C. P., Smith, M. A. H., Benner, D. Ch., and Fridovitch, B., 1986: Tunable diode laser measurements of air broadened linewidths in the ν6 band of H2O2, Appl. Opt. 25, 1844–1847.Google Scholar
  137. Markov, V. N. and Krupnov, A. F., 1995: Measurements of the pressure shift of the 110-101 water line at 556 GHz produced by mixtures of gases, J. Mol. Spectrosc. 172, 211–214.CrossRefGoogle Scholar
  138. Matsushima, F., Odashima, H., Iwaskai, T., and Tsunekawa, S., 1995: Frequency measurement of pure rotational transitions of H2O from 0.5 to 5 THz, J. Mol. Struct. 352–353, 371–378.CrossRefGoogle Scholar
  139. May, R. D., 1992: Line intensities and collisional broadening for the ν4 and ν6 bands of COF2, J.~Quant. Spectrosc. Radiat. Transfer 48, 701–712.CrossRefGoogle Scholar
  140. Meerts, W. L., De Leeuw, F. H., and Dymanus, A., 1977: Electric and magnetic properties of carbone monoxide by molecular beam electric resonance spectroscopy, Chem. Phys. 22, 319–324.CrossRefGoogle Scholar
  141. Merino, F., Murtagh, D., Baron, P., Ricaud, P., de La Noë, J., and Eriksson, J. E. P., 2002: Studies for the Odin Sub-Millimeter Radiometer: III. Performance simulations, Can. J. Phys. 80, 357–373.CrossRefGoogle Scholar
  142. Messer, J. K. A., De Lucia, F. C., and Helminger, P., 1983: The pure rotational spectrum of water vapor-a millimeter, submillimeter, and far infrared analysis, Int. J. Infrar., and Mill. Waves 4, 505–539.Google Scholar
  143. Messer, J. K. A., De Lucia, F. C., and Helminger, P., 1984: Submillimeter spectroscopy of the major isotopes of water, J. Mol. Spectrosc. 105, 139–155.CrossRefGoogle Scholar
  144. Mizushima, M. and Yamamoto, S., 1991: Microwave absorption lines of 16O18O in its (X3 Σg-, ν=0) state, J. Mol. Spectrosc. 148, 447–452.CrossRefGoogle Scholar
  145. Morino, I., and Yamada, K. M. T., 2003: Absorption profiles of N2O measured for the J=25 –24 and 26–25 rotational transitions, J. Mol. Spectrosc. 219, 282–289.CrossRefGoogle Scholar
  146. Muenter, J. S., 1975: Electric dipole of carbon monoxide, J. Mol. Spectrosc. 155, 490–491.CrossRefGoogle Scholar
  147. Murtagh, D., Frisk, U., Merino, F., Ridal, M., Jonsson, A., Stegman, J., Witt, G., Eriksson, P., Jimenez, C., Mégie, G., de La Noë, J., Ricaud, P., Baron, P., Pardo, J. R., Hauchecorne, A., Llewellyn, E. J., Degenstein, D. A., Gattinger, R. L., Lloyd, N. D., Evans, W. F. J., McDade, I. C., Haley, C. S., Sioris, C., von Savigny, C., Solheim, B. H., McConnell, J. C., Strong, K., Richardson, E. H., Leppelmeier, G. W., Kyrölä, E., Auvinen, H., and Oikarinen, L., 2002: An overview of the Odin atmospheric mission, Can. J. Phys. 80, 309–319.CrossRefGoogle Scholar
  148. Nadler, S., Daunt, S. J., and Reuter, D. C., 1987: Tunable diode laser measurements of formaldehyde foreign-gas broadening parameters and line strengths in the 9–11 μm region, Applied Opt. 26, 1641–1646.Google Scholar
  149. Nedoluha, G., Bevilacqua, R., Gomez, R., Thacker, D., Waltmann, W., and Pauls, T., 1995: Ground-based measurements of water vapor in the middle atmosphere, J Geophys Res. D100, 2927–2939.CrossRefGoogle Scholar
  150. Nelson, D. D., and Zahniser, M. S., 1994: Air broadened linewidth measurements in the ν2 vibrational band of hydroperoxyl radical, J. Mol. Spectrosc. 166, 273–279.CrossRefGoogle Scholar
  151. Nerf, R. B., 1975a: Pressure broadening and shift (self-hydrogen- and helium-) in the millimeter wave spectrum of formaldehyde, J. Mol. Spectrosc. 58, 451–473.CrossRefGoogle Scholar
  152. Nerf, R. B., and Sonnenberg, M. A., 1975b: Pressure broadening of the J=1–0 transition of hydrogen cyanide, J. Mol Spectrosc. 58, 479–480.CrossRefGoogle Scholar
  153. Nolt, I. G., Radostitz, J. V., Dilonardo, G., Evenson, K. M., Jennings, D. A., and Leopold, K. R., 1987: Accurate rotational constants of CO, HCl and HF: spectral standards for the 0–3 to 6 THz (10–200 cm-1) region, J. Mol. Spectrosc. 125, 490–491.CrossRefGoogle Scholar
  154. Odashima, H., Zink, L. R., and Evenson, K. M., 1999: Tunable far-infrared spectroscopy of HF, H35Cl, and H37Cl in the 6 to 9 THz region, J. Mol. Spectrosc. 194, 283–284.CrossRefPubMedGoogle Scholar
  155. Oh, J. J., and Cohen, E. A., 1994: Pressure broadening of ClO by N2 and O2 near 204 and 649 GHz and new frequency measurements between 632 and 725 GHz, J. Quant. Spectrosc. Radiat. Transfer 52, 151–156.CrossRefGoogle Scholar
  156. Pardo, J. R., Pagani, L., Gerin, M., and Prigent, C., 1995: Evidence of the Zeeman splitting in the 21 to 01 rotational transition of the atmospheric 16O18O molecule from ground-based measurements, J. Quant. Spectrosc. Radiat. Transfer 54, 931–943.CrossRefGoogle Scholar
  157. Pardo, J. R., Pagani, L., Olofsson, G., Febvre, P., Tauber, J., 2000: Balloon-borne submillimeter observations of upper stratospheric O2 and O3, J. Quant. Spectrosc. Radiat. Transfer 67, 169–180.CrossRefGoogle Scholar
  158. Pardo, J. R., Ridal, M., Murtagh, D., and Cernicharo, J., 2002: Microwave temperature and pressure measurements with the Odin satellite: I Observational method, Can. J. Phys. 80, 443–454.CrossRefGoogle Scholar
  159. Park, K., Chance, K. V., Nolt, I. G., Radostitz, J. V., Vanek, M. D., Jennings, D. A., and Evenson, K. M., 1991: Pressure broadening of the 2.5 THz H35Cl rotational line by N2 and O2, J. Mol. Spectrosc. 147, 521–525.CrossRefGoogle Scholar
  160. Paulse, C. D., Coudert, L. H., Goyette, T. M., Crownover, R. L., Helminger, P., and De Lucia, F. C., 1996: Torsional splitting in the ν9 band of nitric acid, J. Mol. Spectrosc. 177, 9–18.CrossRefGoogle Scholar
  161. Pearson, J. C., Anderson, T., Herbst, E., De Lucia, F. C., and Helminger, P., 1991: Millimeter- and submillimeter-wave spectrum of highly excited states of water, Astr. J. Lett. L379, 41–43.CrossRefGoogle Scholar
  162. Perrin, A., Flaud, J.-M., Camy-Peyret, C., Carli, B., and Carlotti, M., 1988: The far infrared spectrum of NO2-Electron spin resonance and hyperfine Fermi contact resonance in the ground state, Mol. Phys. 63, 791–810.Google Scholar
  163. Perrin, A., Camy-Peyret, C., and Flaud, J.-M., 1992: Infrared Nitrogen Dioxide in the HITRAN database, J. Quant. Spectrosc. Radiat. Transfer 48, 645–652.CrossRefGoogle Scholar
  164. Perrin, A., Flaud, J.-M., Camy-Peyret, C., Schermaul, R., Winnewisser, M., Mandin, J.-Y., Dana, V., Badaoui, M., and Koput, J., 1996: Line intensities in the far infrared spectrum of H2O2, J. Mol. Spectrosc. 176, 287–296.CrossRefGoogle Scholar
  165. Perrin, A., Flaud, J.-M., Goldman, A., Camy-Peyret, C., Lafferty, W. J., Arcas, Ph., and Rinsland, C. P., 1998a: NO2 and SO2 line parameters: 1996 HITRAN update and new results, J. Quant. Spectrosc. Radiat. Transfer 60, 839–850.CrossRefGoogle Scholar
  166. Perrin, A., 1998b: Recent progress in the analysis of HNO3 spectra, Spectrochimica Acta A54, 375–393.Google Scholar
  167. Perrin, A., Orphal, J., Flaud, J.-M., Klee, S., Mellau, G., Mäder, H., Walbrodt, D., and Winnewisser, M., 2004: New analysis of the ν5 and 2ν9 bands of HNO3 by infrared and millimeter wave techniques: line positions and intensities, J. Mol. Spectrosc. 228, 375–391.Google Scholar
  168. Petkie, D. T., Goyette, T. M., Helminger, P., Pickett, H. M., and De Lucia, F. C., 2001: The energy levels of the ν5/2ν9 dyad of HNO3 from millimeter and submillimeter rotational spectroscopy, J. Mol. Spectrosc. 208, 121–135.CrossRefPubMedGoogle Scholar
  169. Petkie, D. T., Helminger, P., Butler, R. A. H., Albert, S., and De Lucia, F. C., 2003: The millimeter and submillimeter spectra of the ground and excited ν9, ν8, ν7, and ν6 vibrational states of HNO3, J. Mol. Spectrosc. 218, 127–130.CrossRefGoogle Scholar
  170. Pickett, H. M., Cohen, E. A., and Margolis, J. S., 1985: The infrared and microwave spectra of ozone for the (0, 0, 0), (1, 0, 0), and (0, 0, 1) states, J. Mol. Spectrosc. 110, 186–214.CrossRefGoogle Scholar
  171. Pickett, H. M., Cohen, E. A., Brown, L. R., Rinsland, C. P., Smith, M. A. H., Malathy Devi, V., Goldman, A., Barbe, A., Carli, B., and Carlotti, M., 1988: The vibrational and rotational spectra of ozone for the (0, 1, 0) and (0, 2, 0) states, J. Mol. Spectrosc. 128, 151–171.CrossRefGoogle Scholar
  172. Pickett, H. M., Poynter, R. L., Cohen, E. A., Delitsky, M. L., Pearson, J. C., and Müller, H. S. P., 1998: Submillimeter millimeter and microwave spectral line catalog, J. Quant. Spectrosc. Radiat. Transfer 60, 883–890.CrossRefGoogle Scholar
  173. Pine, A. S. and Fried, A., 1985: Self broadening in the fundamental bands of HF and HCl, J. Mol. Spectrosc. 114, 148–162.CrossRefGoogle Scholar
  174. Pine, A. S. and Looney, J. P., 1987: N2 and air broadening in the fundamental bands of HF and HCl, J. Mol. Spectrosc. 122, 41–44.CrossRefGoogle Scholar
  175. Poynter, R. L., and Pickett, H. M., 1985: Submillimeter, millimeter and microwave spectral line catalog, Appl. Opt. 24, 2235–2240.Google Scholar
  176. Pourcin, J., 1972: Fourier spectrometry of the broadening of the rotational spectra of HCl in the far infrared by helium, J. Quant. Spectrosc. Radiat. Transfer. 12, 1617–1625.CrossRefGoogle Scholar
  177. Pourcin, J. Jacquemoz, A., Fournel, A., and Sielmann, H., 1981: Pressure-broadening spectroscopy of HCl pure rotational lines with a far-infrared optically pumped laser, J. Mol. Spectrosc. 90, 43–50.CrossRefGoogle Scholar
  178. Priem, D., Rohart, F., Colmont, J.-M., Wlodarczak, G., and Bouanich, J. P., 2000a: Lineshape study of the J=3←2 rotational transition of CO perturbed by N2 and O2, J. Mol. Struct. 517–518, 435–454.CrossRefGoogle Scholar
  179. Priem, D., Colmont, J.-M., Rohart, F., Wlodarczak, G., and Gamache, R. R., 2000b: Relaxation and lineshape of the 500.4-GHz line of ozone perturbed by N2 and O2, J. Mol. Spectrosc. 204, 204–215.CrossRefGoogle Scholar
  180. Pumphrey, H. C., and S. Buhler, 2000: Instrumental and spectral parameters: their effect on and measurements by microwave limb sounding of the atmosphere, J. Quant. Spectrosc. Radiat. Transfer. 64, 421–437.CrossRefGoogle Scholar
  181. Puzzarini, C., Dore, L., and Cazzoli, G., 2002: A comparison of lineshape models in the analysis of modulated and natural rotational line profiles: application to the pressure broadening of OCS and CO, J. Mol. Spectrosc. 216, 428–436.CrossRefGoogle Scholar
  182. Raffalski, U., Klein, U., Franke, B., Langer, J., Sinnhuber, B.-M., Trentmann, J., Künzi, K.-F., Schrems, O., 1998: Ground based millimeter-wave observations of Arctic chlorine activation during winter and spring 1996/97, Geophys Res Lett. 25, 3331–3334.CrossRefGoogle Scholar
  183. Reinartz, J.-M.-L.-J., Meerts, W. L., and Dymanus, A., 1978: Hyperfine structure, electric and magnetic properties of 14N216O in the ground and first excited bending vibrational state, Chem. Phys. 31, 19–29.CrossRefGoogle Scholar
  184. Ridal, M., Murtagh, D., Merino, F., Pardo, J. R., and Pagani, L., 2002: Microwave temperature and pressure measurements with the Odin satellite: II Retrieval method, Can. J. Phys., 80, 455–467.CrossRefGoogle Scholar
  185. Rinsland, C. P., Goldman, A., Smith, M. A. H., and Malathy Devi, V., 1991a: Measurements of Lorentz air-broadening coefficients and relative intensities in the H216O pure rotational and ν2 bands from long horizontal path atmospheric spectra, Appl. Opt. 30, 1427–1429.Google Scholar
  186. Rinsland, C. P., Smith, M. A. H., Malathy Devi, V., and Benner, D. Ch., 1991b: Measurements of Lorentz broadening coefficients and pressure induced line shifts coefficients in the ν2 band of D216O, J. Mol. Spectrosc. 150, 173–183.CrossRefGoogle Scholar
  187. Rinsland, C. P., Goldman, A., and Flaud, J.-M., 1992: Infrared spectroscopic parameters of COF2, SF6, ClO, N2 and O2, J. Quant. Spectrosc. Radiat. Transfer 48, 685–692.CrossRefGoogle Scholar
  188. Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practise, Series on Atmospheric, Oceanic and Planetary Physics, 2, World Scientific Publ., February (2000).Google Scholar
  189. Rohart, F., Colmont, J.-M., Wlodarczak, G., and Bouanich, J. P., 2003: N2- and O2-broadening coefficients and profiles for millimeter lines of 14N2O, J. Mol. Spectrosc. 222, 159–171.CrossRefGoogle Scholar
  190. Rosenkranz, P. W., 1998, 1999: Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science 33, 919–928 (1998), (correction in 34, 1025, (1999)).Google Scholar
  191. Rothman, L. S., Goldman, A., Gillis, J. R., Gamache, R. R., Pickett, H. M., Poynter, R. L., Husson, N., and Chedin, A., 1983: AFGL trace gas compilation, Appl. Opt. 22, 1616–1627.Google Scholar
  192. Rothman, L. S., Gamache, R. R., Tipping, R. H., Rinsland, C. P., Smith, M. A. H., Benner, D., Malathy, Ch.,Devi, V., Flaud, J.-M., Camy-Peyret, C., Perrin, A., Goldman, A., Massie, S. T., Brown, L. R., and Toth, R. A., 1992: The HITRAN molecular database: editions of 1991 and 1992, J. Quant. Spectrosc. Radiat. Transfer 48, 469–507.CrossRefGoogle Scholar
  193. Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J.-M., Perrin, A., Dana, V., Mandin, J.-Y., Schroeder, J., McCann, A., Gamache, R. R., Wattson, R. B., Yoshimo, K., Chance, K., Jucks, K., Brown, L. R., Nemtchinov, V., and Varanasi, P., 1998: The HITRAN spectroscopic database and HAWKS (HITRAN Workstation): 1996 edition, J. Quant. Spectrosc. Radiat. Transfer 60, 665–710.CrossRefGoogle Scholar
  194. Rothman, L. S., Barbe, A., Benner, D. C., Brown, L. R., Camy-Peyret, C., Carleer, M. R., Chance, K., Clerbaux, C., Dana, V., Devi, V. M., Fayt, A., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., Jucks, K. W., Lafferty, W. J., Mandin, J.-Y., Massie, S. T., Nemtchinov, V., Newnham, D. A., Perrin, A., Rinsland, C. P., Schroeder, J., Smith, K. M., Smith, M. A., Tang, K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino, K., 2003: The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J. Quant. Spectrosc. Radiat. Transfer 82, 5–44.CrossRefGoogle Scholar
  195. Sandor, B. J. and Clancy, R. T., 1997: Mesospheric observations and modeling of the Zeeman split 233.9 GHz 16O18O line, Geophys. Res. Lett. 24, 1631–1634.CrossRefGoogle Scholar
  196. Scharpen, L. H., Muenter, J. S., and Laurie, V. W., 1970: Electric polarizability anisotropies of nitrous oxide, propyne, and carbonyl sulfide by microwave spectroscopy, J. Chem. Phys. 53, 2513–2519.CrossRefGoogle Scholar
  197. Shorter, J. H., Nelson, D. D., and Zahniser, M. S., 1997: Air broadened linewidths in the ν2 band of HOCl, J. Chem. Soc., Faraday Trans. 93, 2933–2935.Google Scholar
  198. Singbeil, H. E. G., Anderson, W. D., Davis, R. W., Gerry, M. C. L., Cohen, E. A., Pickett, H. M., Lovas, F. J., and Suenram, R. R., 1984: The microwave and millimeter wave spectra of hypochlorous acid, J. Mol. Spectrosc. 103, 466–485.CrossRefGoogle Scholar
  199. Steinbach, W. and Gordy, W., 1975: Microwave spectrum and molecular constants of 16O18O, Phys. Rev. A11, 729–731.Google Scholar
  200. Teffo, J.-L., Perevalov, V. I., and Lyulin, O. M., 1994: Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of nitrous oxide, J. Mol. Spectrosc. 168, 390–403.CrossRefGoogle Scholar
  201. Tejwani, G. D. T., 1972: Calculation of pressure-broadened linewidths of SO2 and NO2”, J. Chem. Phys. 57, 4676–4682.CrossRefGoogle Scholar
  202. Tejwani, G. D. T., and Yeung, E. S., 1977: Pressure-broadened linewidths of formaldehyde, J. Chem. Phys. 66, 491–492.CrossRefGoogle Scholar
  203. Tejwani, G. D. T., and Yeung, E. S., 1978: Pressure broadened linewidths of HNO3, J. Chem Phys. 68, 2012–2013.CrossRefGoogle Scholar
  204. Tipping, R. H. and Ma, Q., 1995: Theory of water vapor continuum and validations, Atm. Res. 36, 69–94.CrossRefGoogle Scholar
  205. Titz, R., Birk, M., Hausamann, D., Nitsche, R., Schreier, F., Urban, J., Küllmann, H., and Röser, H., 1995: Observation of stratospheric OH at 2.5 THz with an airborne heterodyne system, Infrared Phys Technol 36, 883–891.CrossRefGoogle Scholar
  206. Toth, R. A., 1993a: The ν1 - ν2, ν3 - ν2, ν1, and ν3 bands of H216O: line positions and strengths, J. Opt. Soc. Am B 10, 2006–2029.Google Scholar
  207. Toth, R. A., 1993b: The. ν2 - ν2 and 2 ν2 bands of H216O, H217O and H218O: line positions and strengths, J. Opt. Soc. Am B 10, 1526–1544.Google Scholar
  208. Toth, R. A., 1993c: Line strengths (900–3600 cm-1), self broadened linewidths, and frequency shift (1800–2360 cm-1) of N2O, Appl. Opt. 32, 7326–7365.Google Scholar
  209. Toth, R. A.. 1998: Water vapor measurements between 590 and 2582 cm-1: Line positions and strengths, J. Mol. Spectrosc. 190, 379–396.CrossRefPubMedGoogle Scholar
  210. Tretyakov, M.Yu., Parshin, V. V., Koshelev, M. A., V. N.Shanin, Myasnikova, S. E., and Krupnov, A. F., 2003: Studies of the 183 GHz line: broadening and shifting by air, N2 and O2 and integral intensity measurements, J. Mol. Spectrosc. 218, 239–245.CrossRefGoogle Scholar
  211. Tretyakov, M. Yu, Golubiatnikov, G. Yu, Parshin, V. V., Koshelev, M. A., Myasnikova, S. E., Krupnov, A. F., and Rosenkranz, P. W., 2004: Experimental study of the line mixing coefficient for 118.75 GHz oxygen line, J. Mol. Spectrosc. 223, 31–38.CrossRefGoogle Scholar
  212. Urban, J., Baron, Lautié, P., Schneider, N., Dassas, K., Ricaud, P., De La Noë, J., 2004: Moliere (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range, J. Quant. Spectrosc. Radiat. Transfer. 83, 529–554.CrossRefGoogle Scholar
  213. Verdes, C. L.,von Engen, A., Buehler, S. A., Perrin, A., 2004: Partition function data and impact on retrieval quality for an mm/sub-mm limb sounder, J. Quant. Spectrosc. Radiat. Transfer. 90, 217–238.CrossRefGoogle Scholar
  214. Verdes, C. L., Buehler, S. A., Perrin, A., Flaud, J.-M., Demaison, J., Wlodarczak, G., Colmont, J.-M., Cazzoli, G., and Puzzarini, C., 2005: A sensitive study on spectroscopic parameters accuracies for a mm/sub-mm limb sounder instrument, J. Mol. Spectrosc. 229, 266–275.CrossRefGoogle Scholar
  215. Wagner, W., Birk, M., Schreier, F., and Flaud, J.-M., 2002: Spectroscopic data base of the three ozone fundamentals, J. Geophys. Res. D107, ACH10-1-10-18.Google Scholar
  216. Watson, J. K. G., 1977: Aspects of quartic and sextic centrifugal effects on rotational energy levels, J.Durig ed., in Vibrational spectra and structure, 1–89, Elsevier, Amsterdam, Netherlands.Google Scholar
  217. Winnewisser, G., Belov, S. P., Klauss, Th., and Schieder, R., 1997: Subdoppler measurements on the rotational transitions of carbon monoxide, J. Mol. Spectrosc. 184, 468–472.CrossRefGoogle Scholar
  218. Wlodarczak, G., Segard, B., Legrand, J., and Demaison, J., 1985a: The dipole moment of CH335Cl, microwave and submillimeter wave spectrum of methyl chloride, J. Mol. Spectrosc. 111, 204–206.CrossRefGoogle Scholar
  219. Wlodarczak, G., Herlemont, F., Demaison, J., Fayt, A., and Lahaye, J. G., 1985b: Combined subdoppler laser-Stark and millimeter wave spectroscopies, J. Mol. Spectrosc. 112, 401–412.CrossRefGoogle Scholar
  220. Wlodarczak, G., Boucher, D., Bocquet, R., and Demaison, J., 1986: The microwave and submillimeter wave spectrum of methyl chloride, J. Mol. Spectrosc. 116, 251–255.CrossRefGoogle Scholar
  221. Yaron, D., Peterson, K., and Klemperer, W., 1988: On the dipole moment functions of ClO and OH, J. Chem. Phys. 88, 4702–4710.CrossRefGoogle Scholar
  222. Yamada, M. M., Koboyashi, M., Habara, H., Amano, T., and Drouin, B. J., 2003: Submillimeter-wave measurements of the pressure broadening of BrO, J. Quant. Spectrosc. Radiat. Transfer 82, 391–399.CrossRefGoogle Scholar
  223. Zink, L. R., and Mizushima, M., 1987: Pure rotational far-infrared transitions of 16O2 in its electronic and vibrational ground state, J. Mol. Spectrosc. 125, 154–158.CrossRefGoogle Scholar
  224. Zu, L., Hamilton, P. A., and Davies, P. B., 2002: Pressure broadening and frequency measurements of nitric acid lines in the 683 GHz region, J. Quant. Spectrosc. Radiat. Transfer. 73, 545–556.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • A. Perrin
    • 1
  • C. Puzzarini
    • 2
  • J.-M. Colmont
    • 3
  • C. Verdes
    • 4
  • G. Wlodarczak
    • 3
  • G. Cazzoli
    • 2
  • S. Buehler
    • 4
  • J.-M. Flaud
    • 1
  • J. Demaison
    • 3
  1. 1.Laboratoire Interuniversitaire des Systèmes Atmosphèriques (LISA)UMR CNRS 7583, Université Paris 12 – Val-de-Marne, UFR des Sciences et Technologie, Bât. P1Créteil CedexFrance
  2. 2.LMSB, Dipartimento di Chimica “G. Ciamician”Università di BolognaBolognaItaly
  3. 3.Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)UMR CNRS 8523, Université de Lille 1, Bat P5France
  4. 4.Institute of Environmental Physics (ife)University of Bremen/FB 1BremenGermany

Personalised recommendations