Advertisement

Journal of Atmospheric Chemistry

, Volume 51, Issue 2, pp 119–159 | Cite as

Multi-Phase Chemistry of C2 and C3 Organic Compounds in the Marine Atmosphere

  • Peter WarneckEmail author
Article

Abstract

A box model is used to explore the detailed chemistry of C2 and C3 organic compounds in the marine troposphere by tracing the individual reaction paths resulting from the oxidation of ethane, ethene, acetylene, propane, propene and acetic acid. The mechanisms include chemical reactions in the gas phase and in the aqueous phase of clouds and aerosol particles at cloud level under conditions resembling those in the northern hemisphere. Organic hydroperoxides are found to be important intermediate products, with subsequent reactions leading partly to the formation of mixed hydroxy or carbonyl hydroperoxides that are readily absorbed into cloud water, where they contribute significantly to the formation of multifunctional organic compounds and organic acids. Organic hydroperoxides add little to the oxidation of sulfur dioxide dissolved in the aqueous phase, which is dominated by H2O2. Next to acetaldehyde and acetone, glycol aldehyde, glyoxal, methyl glyoxal and hydroxy propanone are prominent oxidation products in the gas and the aqueous phase. Acetaldehyde is not efficiently converted to acetic acid in clouds; the major local sources of acetic acid are gas-phase reactions. Other acids produced include hydroperoxy acetic, glycolic, glyoxylic, oxalic, pyruvic, and lactic acid. The mechanism of Schuchmann et al. (1985), which derives glycolic and glyoxylic acid from the oxidation of acetate, is found unimportant in the marine atmosphere. The principal precursors of glyoxylic acid are glyoxal and glycolic acid. The former derives mainly from acetylene and ethene, the latter from glycolaldehyde, also an oxidation product of ethene. The oxidation of glyoxylic acid leads to oxalic acid, which accumulates and is predicted to reach steady state concentrations in the range 30–90 ng m−3. This is greater, yet of the same magnitude, than the concentrations observed over the remote Pacific Ocean.

Key words

oxidation of C2 and C3 hydrocarbons aqueous phase chemistry of C2 and C3 organic compounds acetaldehyde glycol aldehyde glyoxal methyl glyoxal hydroxy propanone acetic acid hydroperoxy acetic acid glycolic acid glyoxylic acid oxalic acid pyruvic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J., 1997: Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data 26, 521–1011.Google Scholar
  2. Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Monograph 2, American Institute of Physics, New York.Google Scholar
  3. Atlas, E. L. and Ridley, B. A., 1996: The Mauna Loa observatory photochemical experiment: Introduction, J. Geophys. Res. 101, 14531–14541.CrossRefGoogle Scholar
  4. Back, R. A. and Yamamoto, S., 1985: The gas-phase photochemistry and thermal decomposition of glyoxylic acid, Can J. Chem. 63, 542–548.Google Scholar
  5. Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and Turekian, K. K., 1993: Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb, J. Geophys. Res. 98, 20573–20586.Google Scholar
  6. Beck, J., 1998: Organic Acids in the Atmosphere (in German), Doctoral Thesis, University Mainz D77, Shaker Verlag, Aachen, Germany.Google Scholar
  7. Benkelberg, H.-J., Hamm, S., and Warneck, P., 1995: Henry's law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite, J. Atmos. Chem. 20, 17–34.CrossRefGoogle Scholar
  8. Berges, M. G. M. and Warneck, P., 1992: Product quantum yields for the 350 nm photodecomposition of pyruvic acid in air, Ber. Bunsenges. Phys. Chem. 96, 413–416.Google Scholar
  9. Betterton, E. A. and Hoffmann, M. R., 1988: Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol. 22, 1415–1418.CrossRefGoogle Scholar
  10. Blake, D. R. and Rowland, F. S., 1986: Global atmospheric concentrations source strength of ethane, Nature 321, 231–233.Google Scholar
  11. Blake, D. R., Chen, T.-Y., Smith, T. W. Jr., Wang, C. J.-L., Wingenter, O. W., Blake, N. J., and Rowland, F. S., 1996: Three-dimensional distribution of non-methane hydrocarbons and halocarbons over the north-western Pacific during the, 1991 Pacific Exploratory Mission (PEM-West A), J. Geophys. Res. 101, 1763–1778.CrossRefGoogle Scholar
  12. Blake, N. J., Blake, D. R., Simpson, I. J., Meinardi, S., Swanson, A. L., Lopez, J. P., Katzenstein, A. S., Barletta, B., Shirai, T., Atlas, E., Sachse, G. Avery, M., Vay, S., Fuelberg, H. E., Kiley, C. M., Kita, K., and Rowland, F. S., 2003: NMHCs and halocarbons in Asian continental outflow during the transport and chemical evolution over the Pacific (TRACE-P) Field Campaign: Comparison with PEM-West B, J. Geophys. Res. 108 (D20), 8806, doi:10.1029/2002JD003367.Google Scholar
  13. Blake, N. J., Blake, D. R., Chen, T.-Y., Collins, J. E., Sachse, G. W., Anderson, B. E., and Rowland, F. S., 1997: Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B, J. Geophys. Res. 102, 28315–28331.CrossRefGoogle Scholar
  14. Buxton, G. V., Greenstock, C. L., Helman, W. P., and Ross, A. B., 1988: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data 17, 513–886.Google Scholar
  15. Buxton, G. V., Malone, T. N., and Slamon, G. A., 1997: Oxidation of glyoxal initiated by OH in oxygenated aqueous solutions, J. Chem. Soc. Faraday Trans. 93, 2889–2893.CrossRefGoogle Scholar
  16. Calvert, J. G., Atkinson, R., Kerr, J. A., Madronich, S., Moortgat, G. K., Wallington, T. J., and Yarwood, G., 2000: The Mechanisms of Atmospheric Oxidation of the Alkenes, Oxford University PressGoogle Scholar
  17. Chin, M. and Wine, P.-H., 1994: A temperature-dependent competitive kinetics study of the aqueous phase reactions of OH radicals with formate, formic acid, acetate, acetic acid, and hydrated formaldehyde, in G. R. Helz, R. G. Zepp and D. G. Crosby (eds.), Aquatic and Surface Photochemistry, Lewis Publishers, Boca Raton, Florida, pp. 85–96.Google Scholar
  18. Davidovits, P., Hu, J. H., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1995: Entry of gas molecules into liquids, Faraday Discuss. 100, 65–82.CrossRefGoogle Scholar
  19. Duan, S. X., Jayne, J. T., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1993: Uptake of gas-phase acetone by water surfaces, J. Phys. Chem. 97, 2284–2288.CrossRefGoogle Scholar
  20. Ehhalt, D. H., Rudolph, J., and Schmidt, U., 1986: On the importance of light hydrocarbons in atmospheric multiphase systems, in W. Jaeschke (ed.), Chemistry of Multiphase Atmospheric Systems, NATO ASI Series G 6, Springer-Verlag, Berlin, pp. 321–350.Google Scholar
  21. Eigen, M., Kruse, W., Maass, G., and De Mayer, L., 1964: Rate constants of protolytic reactions in aqueous solution, Progr. React. Kinet. 2, 285–318.Google Scholar
  22. Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H., 2003a: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res. 108 (D14), 4426, doi:10.1029/2002JD002202.Google Scholar
  23. Ervens, B., Gligorowski, S., and Herrmann, H., 2003b: Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions, Phys. Chem. Phys. 5, 1811–1824.CrossRefGoogle Scholar
  24. Fischer, M. and Warneck, P., 1991: The dissociation constant of pyruvic acid: Determination by spectrophotometric measurements, Ber. Bunsenges. Phys. Chem. 95, 523–527.Google Scholar
  25. Fried, A., Crawford, J., Olson, J., Walega, J., Potter, W., Wert, B., Jordan, C., Anderson, B., Shetter, R., Lefer, B., Blake, D., Blake, N., Meinardi, S., Heikes, B., O'Sullivan, D., Snow, J., Fuelberg, H., Kiley, C. M., Sandholm, S., Tan, D., Sachse, G., Singh, H., Faloona, I., Harward, C. N., and Carmichael, G. R., 2003: Airborne tunable diode laser measurements of formaldehyde during TRACE-P: Distributions and box model comparisons, J. Geophys. Res. 108(D20), 8798, doi:10.1029/2003JD003451.Google Scholar
  26. Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner, R., 2000: CAPRAM 2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem. 36, 231–284.CrossRefGoogle Scholar
  27. Huie, R. E. and Clifton, C. L., 1990: Temperature dependence of the rate constants for reactions of the sulfate radical, SO4, with anions, J. Phys. Chem. 94, 8561–8567.CrossRefGoogle Scholar
  28. Jenkin, M. E., Saunders, S. M., and Pilling, M. J., 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development, Atmos. Environ. 31, 81–104.CrossRefGoogle Scholar
  29. Jiménez, E., Gilles, M. K., and Ravishankara, A. R., 2003: Kinetics of the reactions of the hydroxyl radical with CH3OH and C2H5OH between 235 and 360 K, J. Photochem. Photobiol. A 157, 237–245.CrossRefGoogle Scholar
  30. Johnson, B. J., Betterton, E. A., and Craig, D., 1996: Henry's law coefficients of formic and acetic acids, J. Atmos. Chem. 24, 113–119.CrossRefGoogle Scholar
  31. Kames, J. and Schurath, U., 1995: Henry's law constant and hydrolysis-rate constants for peroxyacyl nitrates (PANs) using a homogeneous gas-phase source, J. Atmos. Chem. 21, 151–164.CrossRefGoogle Scholar
  32. Kames, J., Schweighoefer, S., and Schurath, U., 1991: Henry's law constant and hydrolysis of acetylperoxy nitrate (PAN), J. Atmos. Chem. 12, 169–180.CrossRefGoogle Scholar
  33. Kawamura, K. and Usukara, K., 1993: Distribution of low molecular weight dicarboxylic acids in the North Pacific aerosol samples, J. Oceanogr. 49, 271–283.Google Scholar
  34. Kawamura, K. and Sakaguchi, F., 1999: Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Coean including tropics, J. Geophys. Res. 104, 3501–3509.CrossRefGoogle Scholar
  35. Khan, I., Brimblecombe, P., and Clegg, S. L., 1995: Solubilities of pyruvic acid and the lower (C1–C6) carboxylic acids. Experimental determination of equilibrium vapor pressures above pure aqueous and salt solutions, J. Atmos. Chem. 22, 285–302.CrossRefGoogle Scholar
  36. Kurz, J. L., 1967: The hydration of acetaldehyde. I Equilibrium thermodynamic parameters, J. Am. Chem. Soc. 89, 3524–3528.CrossRefGoogle Scholar
  37. Kurz, J. L. and Coburn, J. I., 1967: The hydration of acetaldehyde II. Transition state characterization, J. Am. Chem. Soc. 89, 3528–3537.CrossRefGoogle Scholar
  38. Lelieveld, J., Crutzen, P. J., and Rodhe, H., 1989: Zonal average cloud characteristics for global atmospheric chemistry modeling, GLOMAC Report UDC 551. 5510.4, CM-76. International Meteorology Institute, Stockholm.Google Scholar
  39. Lightfoot, P. D., Cox, R. A., Crowley, J. N., Destriau, M., Hayman, G. D., Jenkin, M. E., Moortgat, G. K., and Zabel, F., 1992: Organic peroxy radicals: Kinetics, spectroscopy, and tropospheric chemistry, Atm. Environ. 26A, 1805–1961.Google Scholar
  40. Madronich, S., 1987: Photodissociation in the atmosphere 1. Actinic flux and the effects of ground reflection and clouds, J. Geophys. Res. 92, 9740–9752.Google Scholar
  41. Marchaj, A., Kelley, D. G., Bakac, A., and Espenson, J. H., 1991: Kinetics of the reactions between alkyl radicals and molecular oxygen in aqueous solution, J. Phys. Chem. 95, 4440–4441.CrossRefGoogle Scholar
  42. Mellouki, A. and Mu, Y., 2003: On the atmospheric degradation of pyruvic acid in the gas phase, J. Photochem. Photobiol. A 157, 295–300.CrossRefGoogle Scholar
  43. Orlando, J. J. and Tyndall, G. S., 2003: Gas-phase uv absorption spectra for peracetic acid, and for acetic acid monomers and dimers, J. Photochem. Photobiol. A, 157, 161–166.CrossRefGoogle Scholar
  44. O'Sullivan, D. W., Lee, M., Noone, B. C., and Heikes, B. G., 1996: Henry's law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid, J. Phys. Chem. 100, 3241–3247.CrossRefGoogle Scholar
  45. Plass-Dülmer, C., Koppmann, R., Ratte, M., and Rudolph, J., 1995: Light non-methane hydrocarbons in sea water, Global Biogeochem. Cycles 9, 79–100.CrossRefGoogle Scholar
  46. Pruppacher, H. R. and Klett, J. K., 1997: Microphysics of Clouds and Precipitation, 2nd edn., Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  47. Ratte, M., Plass-Dülmer, C., Koppmann, R., Rudolph, J., and Denga, J., 1993: Production mechanisms of C2-C4 hydrocarbons in seawater: Field measurements and experiments, Global Biogeochem. Cycles, 7, 369–378.Google Scholar
  48. Rudolph, J., 1995: The tropospheric distribution and budget of ethane, J. Geophys. Res. 100, 11369–11381.CrossRefGoogle Scholar
  49. Rudolph, J. and Jonen, F. J., 1990: Measurements of light hydrocarbons over the Atlantic in regions of low biological activity, J. Geophys. Res. 95, 20583–20591.Google Scholar
  50. Saxena, P. and Hildemann, L. M., 1996: Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem. 24, 57–109.CrossRefGoogle Scholar
  51. Schecker, H. G. and Schulz, G., 1969: Untersuchungen zur Hydratationskinetik von Formaldehyd, Z. Phys. Chem. N. F. 65, 221–224.Google Scholar
  52. Schuchmann, H.-P. and von Sonntag, C., 1984: Methyl peroxyl radicals: A study of the γ-radiolysis of methane in oxygenated aqueous solutions, Z. Naturforsch. 39B, 217–221.Google Scholar
  53. Schuchmann, M. N. and von Sonntag, C., 1988: The rapid hydration of the acetyl radical. A pulse radiolysis study of acetaldehyde in aqueous solution, J. Am. Chem. Soc. 110, 5698–5701.CrossRefGoogle Scholar
  54. Schuchmann, M. N., Zegota, H., and von Sonntag, C., 1985: Acetate peroxyl radicals, O2CH2CO2: A study on the γ-Radiolysis and pulse radiolysis of acetate in oxygenated aqueous solutions, Z. Naturforsch. 40b, 215–221.Google Scholar
  55. Schurath, U. and Wipprecht, V., 1980: Reactions of peroxyacyl radicals, in B. Versino and H. Ott (eds.), First European Symposium on Physico-Chemical Behaviour of Atmospheric Pollutants, Ispra, Italy, 1979, CEC, Bruxelle-Luxembourg, pp.157–165.Google Scholar
  56. Sempéré, R. and Kawamura, K., 1996: Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from the western Pacific, Atmos. Environ. 30, 1609–1619.CrossRefGoogle Scholar
  57. Singh, H. B., Kanakidou, M., Crutzen, P. J., and Jacob, D. J., 1995: High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature 378, 50–54.Google Scholar
  58. Singh, H. B., O'Hara, D., Herlth, D., Sachse, W., Blake, D. R., Bradshaw, J. D., Kanakidou, M., and Crutzen, P. J., 1994: Acetone in the atmosphere: Distribution, sources and sinks, J. Geophys. Res. 99, 1805–1819.CrossRefGoogle Scholar
  59. Singh, H., Chen, Y., Tabazadeh, A., Fukui, Y., Bey, I., Yantosca, R., Jacob, D., Arnold, F., Wohlfrom, K., Atlas, E., Flocke, F., Blake, D., Blake, N., Heikes, B., Snow, J., Talbot, R., Gregory, G., Sachse, G., Vay, S., and Kondo, Y., 2000: Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic, J. Geophys. Res. 105, 3795–3805.CrossRefGoogle Scholar
  60. Smith, R. M. and Martell, A. E., 1977: Critical Stability Constants, 3. Other Organic Ligands, Plenum Press, London.Google Scholar
  61. Snider, J. R. and Dawson, G. A., 1985: Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry's law data, J. Geophys. Res. 90D, 3797–3805.Google Scholar
  62. Sø rensen, P. E., Bruhn, K., and Lindelø v, F., 1974: Kinetics and equilibria for the reversible hydration of the aldehyde group on glyoxylic acid, Acta Chem. Scand. A28, 162–168.Google Scholar
  63. Stockwell, W. P., Middleton, P., Chang, J. S., and Tang, X., 1990: The second generation regional acid deposition model. Chemical mechanisms for regional air quality modeling, J. Geophys. Res. 95, 16343–16367.Google Scholar
  64. Stockwell, W. P., Kirchner, R. F., Kuhn, M., and Seefeld, S., 1997: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res. 102, 25847–25879.CrossRefGoogle Scholar
  65. Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A. R., and Wallington, T. J., 2001: Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res. 106, 12157–12182.CrossRefGoogle Scholar
  66. Vel Leitner, N. K. and M. Doré, 1997: Mechanism of the reaction between hydroxyl radicals and glycolic, glyoxylic, acetic, and oxalic acids in aqueous solution: Consequence on hydrogen peroxide consumption in the H2O2/UV and O3/H2O2 systems, Water Res. 31, 1383–1397.CrossRefGoogle Scholar
  67. Wannowius, K. J., 2001: Contribution to the chemistry in clouds: A laboratory study on the kinetics and mechanism of the oxidation of sulfur and nitrogen compounds by hydroperoxides in aqueous phase, in R. Jaenicke (ed.), Dynamics and Chemistry of Hydrometeors, Wiley VCH Weinheim, Germany, pp. 468–527.Google Scholar
  68. Warneck, P., 1999: The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds, Phys. Chem. Chem. Phys. 1, 5471–5483.CrossRefGoogle Scholar
  69. Warneck, P., 2000: Chemistry of the Natural Atmosphere, 2nd edn., Academic Press, San Diego, California.Google Scholar
  70. Warneck, P., 2001: Photodissociation of acetone in the troposphere: An algorithm for the quantum yield, Atmos. Environ. 35, 5773–5777.CrossRefGoogle Scholar
  71. Warneck, P., 2003: In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere, Atmos. Environ. 37, 2423–2427.CrossRefGoogle Scholar
  72. Wollenhaupt, M. and Crowley, J. N., 2000: Kinetic studies of the reactions CH3 + NO2 → products, CH3O + NO2 → products, and OH + CH3C(O)CH3 → CH3C(O)OH + CH3, over a range of temperature and pressure, J. Phys. Chem. A 104, 6429–6438.CrossRefGoogle Scholar
  73. Wollenhaupt, M., Carl, S. A., Horowitz, A., and Crowley, J. N., 2000: Rate coefficient for reaction of OH with acetone between 202 and 295 K, J. Phys. Chem. A 104, 2695–2705.CrossRefGoogle Scholar
  74. Zhou, X. and Mopper, K., 1990: Apparent partition coefficients of 15 carbonyl compounds between air and sea water and between air and freshwater. Implications for air-sea exchange, Environ. Sci. Technol. 24, 1864–1869.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Max-Planck-Institut für ChemieMainzGermany

Personalised recommendations