Journal of Atmospheric Chemistry

, Volume 52, Issue 3, pp 259–281 | Cite as

Transformations of Benzene Photoinduced by Nitrate Salts and Iron Oxide

  • Daniele Borghesi
  • Davide Vione
  • Valter Maurino
  • Claudio Minero
Article

Abstract

This paper reports the results of a study on the transformation of benzene in the presence of solid nitrate salts (NaNO3, NH4NO3) under irradiation in a gas-solid photoreactor. Sodium and ammonium nitrate have been chosen as representative of the composition of atmospheric particulate, benzene as a model aromatic molecule. The purpose is to simulate the transformations that aromatic compounds undergo on the surface of dispersed particles in the atmosphere. Irradiation of sodium nitrate causes hydroxylation and nitration of benzene, yielding phenol and nitrobenzene. This is most likely due to the generation of OH and NO2 radicals upon nitrate photolysis, with OH + O2 leading to the formation of phenol and OH + NO2 yielding nitrobenzene. The percentage of oxygen in the reaction environment influences the transformation pathways, with phenol formation being favoured and nitrobenzene formation depressed by high O2 concentration. In the presence of hematite (α-Fe2O3, another component of atmospheric particulate) very relevant formation of nitrobenzene takes place even with 21% oxygen (simulated air), indicating that the interaction between hematite and nitrate can lead to the formation of aromatic nitroderivatives on the surface of atmospheric particulate. The effect of hematite is possibly due to protonation of peroxynitrite, formed upon nitrate photoisomerisation, to peroxynitrous acid, a powerful nitrating agent. A similar effect leads to relevant formation of nitrobenzene under atmospheric conditions upon irradiation of the acid salt ammonium nitrate.

Key words

aromatic pollutants atmospheric photochemistry heterogeneous reactions particulate matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andino, J. M., Smith, J. N., Flagan, R. C., Goddard, W. A., and Seinfeld, J. H., 1996: Mechanism of atmospheric photooxidation of aromatics: A theoretical study, J. Phys. Chem. 100, 10967–10980.CrossRefGoogle Scholar
  2. Atkinson, R., 1985: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev. 85, 69–201.Google Scholar
  3. Atkinson, R., 1994: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data, Monograph 2.Google Scholar
  4. Atkinson, R. and Arey, J., 1994: Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens, Environ. Health Persp. 102, 117–126.Google Scholar
  5. Atkinson, R., Aschmann, S. M., and Arey, J., 1992: Reactions of OH and NO3 radicals with phenol, cresols, and 2-nitrophenol at 296 ± 2 K, Environ. Sci. Technol. 26, 1397–1403.CrossRefGoogle Scholar
  6. Bard, A. J., Parsons, R., and Jordan, J., 1985: Standard Potentials in Aqueous Solution, Dekker, New York.Google Scholar
  7. Barletta, B., Bolzacchini, E., Meinardi, S., Orlandi, M., and Rindone, B., 2000: The NO3 radical mediated liquid phase nitration of phenols with nitrogen dioxide, Environ. Sci. Technol. 34, 2224–2230.CrossRefGoogle Scholar
  8. Beine, H. J., Allegrini, I., Sparapani, R., Ianniello, A., and Valentini, F., 2001: Three years of springtime trace gas and particle measurements at Ny-Alesund, Svalbard, Atmos. Environ. 35, 3645–3658.Google Scholar
  9. Beitz, T., Bechmann, W., and Mitzer, R., 1999: Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water, Chemosphere 38, 351–361.CrossRefGoogle Scholar
  10. Benkelberg, H.-J. and Warneck, P., 1995: Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of OH and SO4 quantum yields, J. Phys. Chem. 99, 5214–5221.CrossRefGoogle Scholar
  11. Berndt, T., Böge, O., and Herrmann, H., 1999: On the formation of benzene oxide/oxepin in the gas-phase reaction of OH radicals with benzene, Chem. Phys. Lett. 314, 435–442.CrossRefGoogle Scholar
  12. Bjergbakke, E., Sillesen, A., and Pagsberg, P., 1996: UV spectrum and kinetics of hydroxycyclohexadienyl radicals, J. Phys. Chem. 100, 5729–5736.CrossRefGoogle Scholar
  13. Bolzacchini, E., Bruschi, M., Hjorth, J., Meinardi, S., Orlandi, M., Rindone, B., and Rosenbohm, E., 2001: Gas-phase reaction of phenol with NO3, Environ. Sci. Technol. 35, 1791–1797.CrossRefGoogle Scholar
  14. Bröske, R., Kleffmann, J., and Wiesen, P., 2003: Heterogeneous conversion of NO2 on secondary organic aerosol surfaces: A possible source of nitrous acid (HONO) in the atmosphere? Atmos. Chem. Phys. 3, 469–474.Google Scholar
  15. Bunce, N. J., Liu, L., Zhu, J., and Lane, D. A., 1997: Reaction of naphthalene and its derivatives with hydroxyl radicals in the gas phase, Environ. Sci. Technol. 31, 2252–2259.CrossRefGoogle Scholar
  16. Calvert, J. G. and Pitts, Jr., J. N., 1966: Photochemistry, Wiley, New York, pp. 780–786.Google Scholar
  17. Dubowski, Y., Colussi, A. J., and Hoffmann, M. R., 2001: Nitrogen dioxide release in the 302 nm band photolysis of spray-frozen aqueous nitrate solutions. Atmospheric implications, J. Phys. Chem. A 105, 4928–4932.CrossRefGoogle Scholar
  18. Faust, B. C. and Hoffmann, M. R., 1986: Photoinduced reductive dissolution of α-Fe2O3 by bisulfite, Environ. Sci. Technol. 20, 943–948.CrossRefGoogle Scholar
  19. Faust, B. C., Hoffmann, M. R., and Bahnemann, D. W., 1989: Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3, J. Phys. Chem. 93, 6371–6381.CrossRefGoogle Scholar
  20. Finlayson-Pitts, B. J. and Pitts, Jr., J. N., 1986: Atmospheric Chemistry, Wiley, New York.Google Scholar
  21. Finlayson-Pitts, B. J. and Pitts, Jr., J. N., 1997: Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles, Science 276, 1045–1052.CrossRefGoogle Scholar
  22. Fischer, M. and Warneck, P., 1996: Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution, J. Phys. Chem. 100, 18749–18756.Google Scholar
  23. Grätzel, M., Henglein, A., Lilie, J., and Beck, G., 1969: Pulsradiolytische untersuchung einiger elementarprozesse der oxydation und reduktion des nitritions, Ber. Bunsenges. Physik. Chem. 73, 646–653.Google Scholar
  24. Grosjean, D., 1985: Reactions of o-cresol and nitrocresol with NOx in sunlight and with ozone-nitrogen dioxide mixtures in the dark, Environ. Sci. Technol. 19, 968–974.Google Scholar
  25. Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and Olariu, R. I., 2005: Nitrated phenols in the atmosphere: A review, Atmos. Environ. 39, 231–248.Google Scholar
  26. Kleffmann, J., Becker, K. H., Lackhoff, M., and Wiesen, P., 1999: Heterogeneous conversion of NO2 on carbonaceous surfaces, Phys. Chem. Chem. Phys. 1, 5443–5450.CrossRefGoogle Scholar
  27. Klotz, B., Volkamer, R., Hurley, M. D., Sulbaek Andersen, M. P., Nielsen, O. J., Barnes, I., Imamura, T., Wirtz, K., Becker, K.-H., Platt, U., Wallington, T. J., and Washida, N., 2002: OH-initiated oxidation of benzene. Part II. Influence of elevated NOx concentrations, Phys. Chem. Chem. Phys. 4, 4399–4411.CrossRefGoogle Scholar
  28. Knispel, R., Koch, R., Siese, M., and Zetzsch, C., 1990: Adduct formation of OH radicals with benzene, toluene, and phenol and consecutive reactions of the adduct with NOx and O2, Ber. Bunsenges. Phys. Chem. 94, 1375–1379.Google Scholar
  29. Kunai, A., Hata, S., Ito, S., and Sasaki, K., 1986: The role of oxygen in the hydroxylation reaction of benzene with Fenton's reagent. 18O tracer study, J. Am. Chem. Soc. 108, 6012–6016.CrossRefGoogle Scholar
  30. Leland, J. K. and Bard, A. J., 1987: Photochemistry of colloidal semiconducting iron oxide polymorphs, J. Phys. Chem. 91, 5076–5083.Google Scholar
  31. Leuenberger, C., Czuczwa, J., Tremp, J., and Giger, W., 1988: Nitrated phenols in rain – atmospheric occurrence of phytotoxic pollutants, Chemosphere 17, 511–515.CrossRefGoogle Scholar
  32. Løgager, T. and Sehested, K., 1993: Formation and decay of peroxynitrous acid: A pulse radiolysis study, J. Phys. Chem. 97, 6664–6669.Google Scholar
  33. Lüttke, J. and Levsen, K., 1997: Phase partitioning of phenol and nitrophenols in clouds, Atmos. Environ. 31, 2649–2655.Google Scholar
  34. Lüttke, J., Scheer, V., Levsen, K., Wünsch, G., Cape, J. N., Hargreaves, K. J., Storeton-West, R. L., Acker, K., Wieprecht, W., and Jones, B., 1997: Occurrence and formation of nitrated phenols in and out of cloud, Atmos. Environ. 16, 2637–2648.Google Scholar
  35. Machado, F. and Boule, P., 1995: Photonitration and photonitrosation of phenolic derivatives induced in aqueous solution by excitation of nitrite and nitrate ions, J. Photochem. Photobiol. A: Chem. 86, 73–80.CrossRefGoogle Scholar
  36. Mack, J. and Bolton, J. R., 1999: Photochemistry of nitrite and nitrate in aqueous solution: A review, J. Photochem. Photobiol. A: Chem. 128, 1–13.CrossRefGoogle Scholar
  37. Mark, G., Korth, H.-G., Schuchmann, H.-P., and von Sonntag, C., 1996: The photochemistry of aqueous nitrate ion revisited, J. Photochem. Photobiol. A: Chem. 101, 89–103.CrossRefGoogle Scholar
  38. Maurino, V., Minero, C., Pelizzetti, E., Piccinini, P., Serpone, N., and Hidaka, H., 1997: The fate of organic nitrogen under photocatalytic conditions: Degradation of nitrophenols and aminophenols on irradiated TiO2, J. Photochem. Photobiol. A: Chem. 109, 171–176.CrossRefGoogle Scholar
  39. Maurino, V., Minero, C., Pelizzetti, E., and Vincenti, M., 1999: 2nd Annual Report to the Provincia di Torino Government, Program “Investigation on the Space and Temporal Distribution of Toxic and Carcinogenic Substances in Areas with Heavy Traffic Loading”, Technical Report, University of Torino, Italy.Google Scholar
  40. Minero, C., Maurino, V., and Gianotti, E., 2004: Final Report to the Provincia di Torino Government, Program “Evaluation of the Impact of Different Emission Sources on Urban Air Quality”, Technical Report, University of Torino, Italy.Google Scholar
  41. Olariu, R. I., Klotz, B., Barnes, I., Becker, K. H., and Mocanu, R., 2002: FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m- and p-cresol, Atmos. Environ. 36, 3685–3697.CrossRefGoogle Scholar
  42. Pitts, Jr., J. N., Arey Sweetman, J., Zielinska, B., Winer, A. M., and Atkinson, R., 1985: Determination of 2-nitrofluoranthene and 2-nitropyrene in ambient particulate organic matter, Atmos. Environ. 19, 1601–1608.Google Scholar
  43. Plumb, R. C. and Edwards, J. O., 1992: Color centers in UV-irradiated nitrates, J. Phys. Chem. 96, 3245–3247.CrossRefGoogle Scholar
  44. Rabani, J. and Matheson, M. S., 1964: Pulse radiolytic determination of pK for hydroxyl ionic dissociation in water, J. Am. Chem. Soc. 86, 3175–3176.CrossRefGoogle Scholar
  45. Ridd, J. H., 1998: Some unconventional pathways in aromatic nitration, Acta Chem. Scand. 52, 11–22.CrossRefGoogle Scholar
  46. Sasaki, J., Aschmann, S. M., Kwok, E. S. C., Atkinson, R., and Arey, J., 1997: Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene, Environ. Sci. Technol. 31, 3173–3179.CrossRefGoogle Scholar
  47. Schüssler, W. and Nitschke, L., 2001: Nitrophenols in precipitation, Chemosphere 42, 277–283.Google Scholar
  48. Siffert, C. and Sulzberger, B., 1991: Light-induced dissolution of hematite in the presence of oxalate: A case study, Langmuir 7, 1627–1634.CrossRefGoogle Scholar
  49. Sugiyama, H., Watanabe, T., and Hirayama, T., 2001: Nitration of pyrene in metallic oxides as soil components in the presence of indoor air, nitrogen dioxide gas, nitrite ion, or nitrate ion under xenon illumination, J. Health Sci. 47, 28–35.CrossRefGoogle Scholar
  50. Vanni, A., Pellegrino, V., Gamberini, R., and Calabria, A., 2001: An evidence for nitrophenols contamination in Antarctic fresh-water and snow. Simultaneous determination of nitrophenols and nitroarenes at ng/L levels, Int. J. Environ. Anal. Chem. 79, 349–365.Google Scholar
  51. Vincenti, M., Maurino, V., Minero, C., and Pelizzetti, E., 2001: Detection of nitro-substituted polycyclic aromatic hydrocarbons in the Antarctic airborne particulate, Int. J. Environ. Anal. Chem. 79, 257–272.Google Scholar
  52. Vione, D., Maurino, V., Minero, C., Vincenti, M., and Pelizzetti, E., 2001a: Formation of nitrophenols upon UV irradiation of phenol and nitrate in aqueous solutions and in TiO2 aqueous suspensions, Chemosphere 44, 237–248.CrossRefGoogle Scholar
  53. Vione, D., Maurino, V., Minero, C., and Pelizzetti, E., 2001b: Phenol photonitration upon UV irradiation of nitrite in aqueous solution I: Effects of oxygen and 2-propanol, Chemosphere 45, 893–902.Google Scholar
  54. Vione, D., Maurino, V., Minero, C., and Pelizzetti, E., 2001c: Phenol photonitration upon UV irradiation of nitrite in aqueous solution II: Effects of pH and TiO2, Chemosphere 45, 903–910.Google Scholar
  55. Vione, D., Maurino, V., Minero, C., and Pelizzetti, E., 2002a: New processes in the environmental chemistry of nitrite: Nitration of phenol upon nitrite photoinduced oxidation, Environ. Sci. Technol. 36, 669–676.CrossRefGoogle Scholar
  56. Vione, D., Maurino, V., Minero, C., and Pelizzetti, E., 2002b: Phenol photonitration, Ann. Chim. (Rome) 92, 919–929.Google Scholar
  57. Vione, D., Maurino, V., Minero, C., Vincenti, M., and Pelizzetti, E., 2003a: Aromatic photonitration in homogeneous and heterogeneous aqueous systems, Environ. Sci. Pollut. Res. 10, 321–324.Google Scholar
  58. Vione, D., Maurino, V., Minero, C., Borghesi, D., Lucchiari, M., and Pelizzetti, E., 2003b: New processes in the environmental chemistry of nitrite 2. The role of hydrogen peroxide, Environ. Sci. Technol. 37, 4635–4641.CrossRefGoogle Scholar
  59. Vione, D., Maurino, V., Minero, C., and Pelizzetti, E., 2004a: Phenol nitration upon oxidation of nitrite by Mn(III, IV) (hydr)oxides, Chemosphere 55, 941–949.CrossRefGoogle Scholar
  60. Vione, D., Maurino, V., Pelizzetti, E., and Minero, C., 2004b: Phenol photonitration and photonitrosation upon nitrite photolysis in basic solution, Int. J. Environ. Anal. Chem. 84, 493–504.CrossRefGoogle Scholar
  61. Vione, D., Barra, S., De Gennaro, G., De Rienzo, M., Gilardoni, S., Perrone, M. G., and Pozzoli, L., 2004c: Polycyclic aromatic hydrocarbons in the atmosphere: Monitoring, sources, sinks and fate. II: Sinks and fate, Ann. Chim. (Rome) 94, 257–268.Google Scholar
  62. Vione, D., Maurino, V., Minero, C., Lucchiari, M., and Pelizzetti, E., 2004d: Nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution, Chemosphere 56, 1049–1059.CrossRefGoogle Scholar
  63. Vione, D., Maurino, V., Minero, C., and Pelizzetti, E., 2005: Nitration and photonitration of naphthalene in aqueous systems, Environ. Sci. Technol. 39, 1101–1110.Google Scholar
  64. Vogt, R. and Finlayson-Pitts, B. J., 1995: Unique photochemistry of surface nitrate, J. Phys. Chem. 99, 17269–17272.Google Scholar
  65. Volkamer, R., Klotz, B., Barnes, I., Imamura, T., Wirtz, K., Washida, N., Becker, K. H., and Platt, U., 2002: OH-initiated oxidation of benzene. Part I. Phenol formation under atmospheric conditions, Phys. Chem. Chem. Phys. 4, 1598–1610.CrossRefGoogle Scholar
  66. Wang, H., Hasegawa, K., and Kagaya, S., 1999: Nitration of pyrene adsorbed on silica particles by nitrogen dioxide under simulated atmospheric conditions, Chemosphere 39, 1923–1936.Google Scholar
  67. Warneck, P. and Wurzinger, C., 1988: Product quantum yields for the 305-nm photodecomposition of NO3 in aqueous solution, J. Phys. Chem. 92, 6278–6283.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Daniele Borghesi
    • 1
  • Davide Vione
    • 1
  • Valter Maurino
    • 1
  • Claudio Minero
    • 1
  1. 1.Dipartimento di Chimica AnaliticaUniversità di TorinoTorinoItaly

Personalised recommendations