Journal of Atmospheric Chemistry

, Volume 52, Issue 3, pp 231–257 | Cite as

Hydroxyl and Peroxy Radical Chemistry in a Rural Area of Central Pennsylvania: Observations and Model Comparisons

  • Xinrong Ren
  • William H. Brune
  • Christopher A. Cantrell
  • Gavin D. Edwards
  • Terry Shirley
  • Andrew R. Metcalf
  • Robert L. Lesher
Article

Abstract

Atmospheric hydroxyl (OH), hydroperoxy (HO2), total peroxy (HO2 and organic peroxy radicals, RO2) mixing ratios and OH reactivity (first order OH loss rate) were measured at a rural site in central Pennsylvania during May and June 2002. OH and HO2 mixing ratios were measured with laser induced fluorescence (LIF); HO2 + RO2 mixing ratios were measured with chemical ionization mass spectrometry (CIMS). The daytime maximum mixing ratios were up to 0.6 parts per trillion by volume (pptv) for OH, 30 pptv for HO2, and 45 pptv for HO2 + RO2. A parameterized RACM (Regional Atmospheric Chemistry Mechanism) box model was used to predict steady state OH, HO2 and HO2 + RO2 concentrations by constraining the model to the measured OH reactivity and previously measured volatile organic compound (VOC) distributions. The averaged model calculations are generally in good agreement with the observations. For OH, the model matched the observations for day and night, with an average observed-to-modeled ratio of 0.80. In previous studies such as PROPHET98, nighttime NO was near 0 pptv and observed nighttime OH was significantly larger than modeled OH. In this study, nighttime observed and modeled OH agree to within measurement and model uncertainties because the main source of the nighttime OH was the reaction HO2 + NO → OH + NO2, with the NO being continually emitted from the surrounding fertilized corn field. The observed-to-modeled ratio for HO2 is 1.0 on average, although daytime HO2 is underpredicted by a factor of 1.2 and nighttime HO2 is over-predicted by a factor of ∼2. The average measured and modeled HO2 + RO2 agree well during daytime, but the modeled value is about twice the measured value during nighttime. While measured HO2 + RO2 values agree with modeled values for NO mixing ratios less than a few parts per billion by volume (ppbv), it increases substantially above the expected value for NO greater than a few ppbv. This observation of the higher-than-expected HO2 + RO2 with the CIMS technique confirms the observed increase of HO2 above expected values at higher NO mixing ratios in HO2 measurements with the LIF technique. The maximum instantaneous O3 production rate calculated from HO2 and RO2 reactions with NO was as high as 10–15 ppb h−1 at midday; the total daily O3 production varied from 13 to 113 ppbv d−1 and was 48 ppbv d−1 on average during this campaign.

Key words

hydroxyl radical peroxy radicals atmospheric chemistry ozone production model comparison 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aneja, V. P., Holbrook, B. D., and Robarge, W. P., 1997: Nitrogen oxide flux from an agricultural soil during winter fallow in the upper coastal plain of North Carolina, U.S.A., Air & Waster Mange. Assoc. 47, 800–805.Google Scholar
  2. Cantrell, C. A., Shetter, R. E., Gilpin, T. M., Calvert, J. G., Eisele, F. L., and Tanner, D. J., 1996: Peroxy radical concentrations measured and calculated from trace gas measurements in the Mauna Loa Observatory Photochemistry Experiment 2, J. Geophys. Res. 101, 14,653–14,664.Google Scholar
  3. Cantrell, C. A., Shetter, R. E., J. G. Calvert, J. G., Eisele, F. L., Williams, E., Baumann, K., Brune, W. H., and Stevens, P. S., 1997a: Peroxy radicals from photostationary state deviation and steady state calculations during the Tropospheric OH Photochemistry Experiment at Idaho Hill, Colorado, 1993, J. Geophys. Res. 102, 6369–6378.Google Scholar
  4. Cantrell, C. A., Shetter, R. E., Calvert, J. G., Eisele, F. L., and Tanner, D. J., 1997b: Some considerations of the origin of nighttime peroxy radicals during MLOPEX-2c, J. Geophys. Res. 102, 15,899 15,913.Google Scholar
  5. Cantrell C. A., Edwards, G. D., Stephens, S., Mauldin, L., Kosciuch, E., Zondlo, M., and Eisele, F., 2003a: Peroxy radical observations using chemical ionization mass spectrometry during TOPSE, J. Geophys. Res. 108, 8371, doi:10.1029/2002JD002715.Google Scholar
  6. Cantrell, C. A., Edwards, G. D., Stephens, S., Mauldin, R. L., Zondlo, M. A., Kosciuch, E., Eisele, F. L., Shetter, R. E., Lefer, B. L., Hall, S., Flocke, F., Weinheimer, A., Fried, A., Apel, E., Kondo, Y., Blake, D. R., Blake, N. J., Simpson, I. J., Bandy, A. R., Thornton, D. C., Heikes, B. G., Singh, H. B., Brune, W. H., Harder, H., Martinez, M., Jacob, D. J., Avery, M. A., Barrick, J. D., Sachse, G. W., Olson, J. R., Crawford, J. H., and Clarke, A. D., 2003b: Peroxy radical behavior during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign as measured aboard the NASA P-3B aircraft, J. Geophys. Res. 108, 8797, doi:10.1029/2003JD003674.Google Scholar
  7. Carslaw, N., Creasey, D. J., Heard, D. E., Lewis, A. C., McQuaid, J. B., Pilling, M. J., Monks, P. S., Bandy, B. J., and Penkett, S. A., 1999a: Modeling OH, HO2, and RO2 radicals in the marine boundary layer: 1. Model construction and comparison with field measurements, J. Geophys. Res. 104, 30,241–30,255.Google Scholar
  8. Carslaw, N., Jacoba, P. J., and Pilling, M. J., 1999b: Modeling OH, HO2, and RO2 radicals in the marine boundary layer 2. Mechanism reduction and uncertainty analysis, J. Geophys. Res. 104, 30,257–30,273.Google Scholar
  9. Carslaw, N., Creasey, D. J., Harrison, D., Heard, D. E., Hunter, M. C., Jacobs, P. J., Jenkin, M. E., Lee, J. D., Lewis, A. C., Pilling, M. J., Saunders, S. M., and Seakins, P. W., 2001: OH and HO2 radical chemistry in a forested region of north-western Greece, Atmos. Environ. 35, 4725–4737.Google Scholar
  10. Carslaw, N., Creasey, D. J., Heard, D. E., Jacobs, P. J., Lee, J. D., Lewis, A. C., McQuaid, J. B., and Pilling, M. J., 2002: Eastern Atlantic Spring Experiment 1997 (EASE97) 2. Comparisons of model concentrations of OH, HO2, and RO2 with measurements, J. Geophys. Res. 107, 4190, doi:10.1029/2001JD001568.Google Scholar
  11. Creasey, D. J., Heard, D. E., and Lee, J. D., 2001: OH and HO2 measurements in a forested region of north-western Greece, Atmos. Environ. 35, 4713–4724.CrossRefGoogle Scholar
  12. Creasey, D. J., Heard, D. E., and Lee, J. D., 2002: Eastern Atlantic Spring Experiment 1997 (EASE97) 1. Measurements of OH and HO2 concentrations at Mace Head, Ireland, J. Geophys. Res. 107, 4091, doi:10.1029/2001JD000892.CrossRefGoogle Scholar
  13. Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X., Thornberry, T., Carroll, M. A., Young, V., Shepson, P. B., Riemer, D., Apel, E., and Campbell, C., 2004: Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs, Science 304, 722–725.CrossRefGoogle Scholar
  14. Donahue, N. M., Kroll, J. H., and Anderson, J. G., 1998: Direct observation of OH production from the ozonolysis of olefins, Geophys. Res. Lett. 25, 59–62.CrossRefGoogle Scholar
  15. Edwards, G. D., Cantrell, C. A., Stephens, S., Hill, B., Goyea, O., Shetter, R. E., Mauldin, R. L., Kosciuch, E., Tanner D. J., and Eisele, F. L., 2003: Chemical Ionization Mass Spectrometer instrument for the measurement of tropospheric HO2 and RO2, Anal. Chem. 75, 5317–5327.CrossRefGoogle Scholar
  16. Ehhalt, D. H., Dorn, H.-P., and Poppe, D., 1991: The chemistry of the hydroxyl radical in troposphere, Proc. Royal. Soc. Ed. 97B, 17–34.Google Scholar
  17. Ehhalt, D. H. and Rohrer, F., 2000: Dependence of the OH concentration on solar UV, J. Geophys. Res. 105, 3565–3571.CrossRefGoogle Scholar
  18. Eisele, F. L., Mount, G. H., Tanner, D., Jefferson, A., Shetter, R., Harder, J. W., and Williams, E. J., 1997: Understanding the production and interconversion of the hydroxyl radical during the Tropospheric OH Photochemistry Experiment, J. Goephys. Res. 102, 6457–6465.Google Scholar
  19. Faloona, I., Tan, D., Brune, W., Hurst, J., Barket Jr., D., Couch, T. L., Shepson, P., Apel, E., Riemer, D., Thornberry, T., Carroll, M. A., Sillman, S., Keeler, G. J., Sagady, J., Hooper, D., and Paterson, K., 2001: Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy, J. Geophys. Res. 106, 24,315–24,333.CrossRefGoogle Scholar
  20. Faloona, I. C., Tan, D., Lesher, R. L., Hazen, N. L., Frame, C. L., Simpas, J. B., Harder, H., Martinez, M., Di Carlo, P., Ren, X., and Brune, W. H., 2004: A laser induced fluorescence instrument for detecting tropospheric OH and HO2: Characteristics and calibration, J. Atmos. Chem. 47, 139–167.CrossRefGoogle Scholar
  21. George, L. A., Hard, T. M., and O'Brien, R. J., 1999: Measurement of free radicals OH and HO2 in Los Angeles smog, J. Geophys. Res. 104, 11,643–11,655.CrossRefGoogle Scholar
  22. Geyer, A., Bächmann, K., Hofzumahaus, A., Holland, F., Konrad, S., Klüpfel, T., Pätz, H.-W., Perner, D., Mihelcic, D., Schäfer, H.-J., Volz-Thomas, A., and Platt, U., 2003: Nighttime formation of peroxy and hydroxyl radicals during the BERLIOZ campaign: Observations and modeling studies. J. Geophys. Res. 108, 8249, doi:10.1029/2001JD000656.Google Scholar
  23. Hard, T. M., O'Brien, R. J., Chan, C. Y., and Mehrabzadeh, A. A., 1984: Tropospheric free radical determination by FAGE, Environ. Sci. Technol. 18, 768–777.CrossRefGoogle Scholar
  24. Hofzumahaus, A., Aschmutat, U., Heßling, M., Holland, F., and Ehhalt, D. H., 1996: The measurement of tropospheric OH radicals by laser-induced fluorescence spectroscopy during the POPCORN field campaign, Geophys. Res. Lett. 23, 2541–2544.CrossRefGoogle Scholar
  25. Holland, F., Hofzumahaus, A., Schäfer, J., Kraus, A., and Pätz, H., 2003: Measurements of OH and HO2 radical concentrations and photolysis frequencies during BERLIOZ. J. Geophys. Res. 108, 8246, doi:10.1029/2001JD001393.Google Scholar
  26. Kanaya, Y., Sadanaga, Y., Matsumoto, J., Sharma, U. K., Hirokawa, J., Kajii, Y., and Akimoto, H., 1999: Nighttime observation of the HO2 radical by a LIF instrument at Oki island, Japan, and its possible origins, Geophys. Res. Lett. 26, 2179–2183.CrossRefGoogle Scholar
  27. Kanaya, Y., Sadanaga, Y., Nakamura, K., and Akimoto, H., 2001a: Behavior of OH and HO2 radicals during the Observations at a Remote Island of Okinawa (ORION99) field campaign 1. Observation using a laser-induced fluorescence instrument, J. Geophys. Res. 106, 24,197–24,208.Google Scholar
  28. Kanaya, Y., Matsumoto, J., Kato, S., and Akimoto, H., 2001b: Behavior of OH and HO2 radicals during the Observations at a Remote Island of Okinawa (ORION99) field campaign 2. Comparison between observations and calculations, J. Geophys. Res. 106, 24,209–24,223.Google Scholar
  29. Kanaya, Y., Yokouchi, Y., Matsumoto, J., Nakamura, K., Kato, S., Tanimoto, H., Furutani, H., Toyota, K., and Akimoto, H., 2002: Implications of iodine chemistry for daytime HO2 levels at Rishiri Island, Geophys. Res. Lett. 29, 1212, doi:10.1029/2001GL014061.CrossRefGoogle Scholar
  30. Kim, D. S. and Kim, J. C., 2002: Soil nitric and nitrous oxide emissions from agricultural and tidal flat fields in southwestern Korea, J. Environ. Eng. Sci. 1, 359–369.CrossRefGoogle Scholar
  31. Konrad, S., Schmitz, Th., Buers, H.-J., Houben, N., Mannschreck, K., Mihelcic, D., Müsgen, P., Pätz, H.-W., Holland, F., Hofzumahaus, A., Schäfer, H.-J., Schröder, S., Volz-Thomas, A., Bächmann, K., Schlomski, S., Moortgat, G., and Großmann, D., 2003: Hydrocarbon measurements at Pabstthum during the BERLIOZ campaign and modeling of free radicals, J. Geophys. Res. 108, 8251, doi:10.1029/2001JD000866.CrossRefGoogle Scholar
  32. Kovacs, T. A. and Brune, W. H., 2001: Total OH loss rate measurement, J. Atmos. Chem. 39, 105–122.CrossRefGoogle Scholar
  33. Kovacs, T. A., Brune, W. H., Harder, H., Martinez, M., Simpas, J. B., Frost, G. J., Williams, E., Jobson, T., Stroud, C., Young, V., Fried, A., and Wert, B., 2003: Direct measurements of urban OH reactivity during Nashville SOS in summer 1999, J. Environ. Monit. 5, 68–74, doi:10.1039/b204339d.CrossRefGoogle Scholar
  34. Kramp, F. and Volz-Thomas, A., 1997: On the budget of OH radicals and ozone in an urban plume from the decay of C5-C8 hydrocarbons and NOx, J. Atmos. Chem. 28, 263–282.CrossRefGoogle Scholar
  35. Levy, H., 1971: Normal atmosphere: large radical and formaldehyde concentrations predicted, Science 173, 141–143.Google Scholar
  36. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981: Tropospheric chemistry: a Global perspective, J. Geophys. Res. 86, 7210–7254.CrossRefGoogle Scholar
  37. Martin, R. S., Westberg, H., Allwine, E., Ashman, L., Farmer, J. C., and Lamb, B., 1991: Measurement of isoprene and its atmospheric oxidation products in a Central Pennsylvania deciduous forest, J. Atmos. Chem. 13, 1–32.CrossRefGoogle Scholar
  38. Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Frost, G., Williams, E. J., Stroud, C. A., Jobson, B. T., Roberts, J. M., Hall, S. R., Shetter, R. E., Wert, B., Fried, A., Alicke, B., Stutz, J., Young, V. L., White, A. B., and Zamora, R. J., 2003: OH and HO2 concentrations, sources and loss rates during the Southern Oxidants Study in Nashville, TN, summer 1999, J. Geophys. Res. 108, 4617, doi: 10.1029/2003JD003551.CrossRefGoogle Scholar
  39. Mather, J. H., Stevens, P. S., and Brune, W. H., 1997: OH and HO2 measurements using laser-induced fluorescence, J. Geophys. Res. 102, 6427–6436.CrossRefGoogle Scholar
  40. McKeen, S. A., Mount, G., Eisele, F., Williams, E., Harder, J., Goldan, P., Kuster, W., Liu, S. C., Baumann, K., Tanner, D., Fried, A., Sewell, S., Cantrell, C., and Shetter, R., 1997: Photochemical modeling of hydroxyl and its relationship to other species during the Tropospheric OH Photochemistry Experiment, J. Geophys. Res. 102, 6467–6493.CrossRefGoogle Scholar
  41. Meng, Z., Dabdub, D., and Seinfeld, J. H., 1997: Chemical coupling between atmospheric ozone and particulate matter, Science 277, 116–119.CrossRefGoogle Scholar
  42. Mihelcic, D., Klemp, D., Müsgen, P., Pätz, H.-W., and Volz-Thomas, A., 1993: Simultaneous measurements of peroxy and nitrate radicals at Schauinsland, J. Atmosp. Chem. 16, 313 335.Google Scholar
  43. Mihelcic, D., Holland, F., Hofzumahaus, A., Hoppe, L., Konrad, S., Müsgen, P., Pätz, H.-W., Schäfer, H.-J., Schmitz, T., Volz-Thomas, A., Bächmann, K., Schlomski, S., Platt, U., Geyer, A., Alicke, B., and Moortgat, G. K., 2003: Peroxy radicals during BERLIOZ at Pabstthum: Measurements, radical budgets and ozone production, J. Geophys. Res. 108, 8254, doi:10.1029/2001JD001014.CrossRefGoogle Scholar
  44. Paulson, S. E. and Orlando, J. J., 1996: The reaction of ozone with alkenes: An important source of HOx in the boundary layer, Geophys. Res. Lett. 23, 3727–3730.CrossRefGoogle Scholar
  45. Penkett, S. A., Monks, P. S., Carpenter, L. J., Clemitshaw, K. C., Ayers, G. P., Gillett, R. W., Galbally, I. E., and Mayer, C. P., 1997: Relationships between ozone photolysis rates and peroxy radical concentration in clean marine air over the southern ocean, J. Geophys. Res. 102, 12,805–12,817.CrossRefGoogle Scholar
  46. Platt, U., LeBras, G., Poule, G., Burrows, J. P., and Moortgat, G., 1990: Peroxy radicals from night-time reaction of NO3 with organic compounds, Nature 348, 147–149.CrossRefGoogle Scholar
  47. Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Shirley, T., Adams, J., Simpas, J. B., and Brune, W. H., 2003a: HOx concentrations and OH reactivity observations in New York City during PMTACS-NY2001, Atmos. Environ. 37, 3627–3637.Google Scholar
  48. Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brune, W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., and Gao, H., 2003b: OH and HO2 chemistry in the urban atmosphere of New York City, Atmos. Environ. 37, 3639–3651.Google Scholar
  49. Ren, X., Edwards, G. D., Cantrell, C. A., Lesher, R. L., Metcalf, A. R., Shirley, T., and Brune, W. H., 2003c: Intercomparison of peroxy radical measurements at a rural site using laser-induced fluorescence and Peroxy Radical Chemical Ionization Mass Spectrometer (PerCIMS) techniques J. Geophys. Res. 108, 4605, doi:10.1029/2003JD003644.CrossRefGoogle Scholar
  50. Ren, X., Harder, H., Martinez, M., Faloona, I., Tan, D., Lesher, R. L., Di Carlo, P., Simpas, J. B., and Brune, W. H., 2004: Interference testing for atmospheric HOx measurements by laser-induced fluorescence, J. Atmos. Chem. 47, 169 190.CrossRefGoogle Scholar
  51. Rohrer, F., Brünning, D., Grobler, E. S., Weber, M., and Ehhalt, D.H., 1998: Mixing ratios and photostationary state of NO and NO2 observed during the POPCORN field campaign at a rural site in Germany, J. Atmos. Chem. 31, 119 137.CrossRefGoogle Scholar
  52. Salisbury, G., Rickard, A. R., Monks, P. S., Allan, B. J., Bauguitte, S., Penkett, S. A., Carslaw, N., Lewis, A. C., Creasey, D. J., Heard, D. E., Jacobs P. J., and Lee, J. D., 2001: Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer, J. Geophys. Res. 106, 12,669 12,687.CrossRefGoogle Scholar
  53. Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 2003: Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation number 14, JPL Publication 02-25, NASA Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  54. Stevens, P. S., Mather, J. H., Brune, W. H., Eisele, F., Tanner, D., Jefferson, A., Cantrell, C., Shetter, R., Sewall, S., Fried, A., Henry, B., Williams, E., Baumann, K., Goldan, P., and Kuster, W., 1997: HO2/OH and RO2/HO2 ratios during the Tropospheric OH Photochemistry Experiment: Measurement and theory, J. Geophys. Res. 102, 6379–6391.Google Scholar
  55. Stockwell, W. R., Kirchner, F., and Kuhn, M., 1997: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res. 102, 25,847–25,879.CrossRefGoogle Scholar
  56. Tan, D., Faloona, I., Simpas, J. B., Brune, W., Shepson, P. B., Couch, T. L., Sumner, A. L., Carroll, M. A., Thornberry, T., Apel, E., Riemer, D., and Stockwell, W., 2001: HOx budget in a deciduous forest: Results from the PROPHET summer 1998 campaign, J. Geophys. Res. 106, 24,407–24,427.Google Scholar
  57. Volz-Thomas, A. and Kolahgar, B., 2000: On the budget of hydroxyl radicals at Schauinsland during the Schauinsland Ozone Precursor Experiment (SLOPE96), J. Geophys. Res. 105, 1611–1622.Google Scholar
  58. Volz-Thomas, A., Pätz, H.-W., Houben, N., Konrad, S., Mihelcic, D., Klüpfel, T., and Perner, D., 2003: Inorganic trace gases and peroxy radicals during BERLIOZ at Pabstthum: An investigation of the photostationary state of NOx and O3, J. Geophys. Res. 108, 8248, doi:10.1029/2001JD001255.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Xinrong Ren
    • 1
  • William H. Brune
    • 1
  • Christopher A. Cantrell
    • 2
  • Gavin D. Edwards
    • 2
    • 2
  • Terry Shirley
    • 1
  • Andrew R. Metcalf
    • 1
  • Robert L. Lesher
    • 1
  1. 1.Department of MeteorologyPennsylvania State UniversityUniversity ParkU.S.A.
  2. 2.Atmospheric Chemistry Division, National Center for Atmospheric ResearchBoulderU.S.A.

Personalised recommendations