Journal of Atmospheric Chemistry

, Volume 52, Issue 2, pp 185–202 | Cite as

Oxygen and Hydrogen Isotopic Signatures of Large Atmospheric Ice Conglomerations

  • J. Martinez-FrÍAs
  • A. Delgado
  • M. MillÁN
  • E. Reyes
  • F. Rull
  • D. Travis
  • R. Garcia
  • F. LÓPez-Vera
  • J. A. RodrÍGuez-Losada
  • J. A. Martin-Rubi
  • J. Raya
  • E. Santoyo


Specific studies about the stable isotope composition (18O/16O and D/H) of atmospheric icy conglomerations are still scarce. The present work offers, for the first time, a very detailed analysis of oxygen and hydrogen isotopic signatures of unusually large ice conglomerations, or “megacryometeors”, that fell to the ground in Spain during January 2000. The hydrochemical analysis is based on the bulk isotopic composition and systematic selective sampling (deuterium isotopic mapping) of eleven selected specimens. δ18O and δD (V-SMOW) of all samples fall into the Meteoric Water Line matching well with typical tropospheric values. The distribution of the samples on Craig's line suggests either a variation in condensation temperature and/or different residual fractions of water vapour (Rayleigh processes). Three of the largest megacryometeors exhibited unequivocally distinctive negative values (δ18O = −17.2%0 and δD = −127 %0 V-SMOW), (δ18O = −15.6%0 and δD = −112%0 V-SMOW) and (δ18O = −14.4%0 and δD = −100%0 V-SMOW), suggesting an atmospheric origin typical of the upper troposphere. Theoretical calculations indicate that the vertical trajectory of growth was lower than 3.2 km. During the period in which the fall of megacryometeors occurred, anomalous atmospheric conditions were observed to exist: a substantial lowering of the tropopause with a deep layer of saturated air below, ozone depression and strong wind shear. Moreover, these large ice conglomerations occurred during non-thunderstorm conditions, suggesting an alternative process of ice growth was responsible for their formation.


hydrogen and oxygen isotopes ice conglomeration megacryometeors tropopause 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AMS, 2000: Glossary of Meteorology, 2nd Edition, ISBN 1-878220-34-9, 850 pp.Google Scholar
  2. BAMS, 2002: The sky is falling. News section V. 83, 12.Google Scholar
  3. Beekmann, M., Ancelet, G., Blonsky, S., De Muer, D., Ebel, A., Elbern, H., Hendricks, J., Kowol-Santen, J., Mancier, C., Sladkovic, R., Smit, H. G. J., Speth, P., Tickl, T., and Van Haver, P., 1997: Regional and global tropopause fold occurrence and related ozone flux across the tropopause, J. Atmos. Chem. (28), 29–44.CrossRefGoogle Scholar
  4. Bertin, F., Campistron, B., Caccia, J. L., and Wilson, R., 2001: Mixing processes in a tropopause folding observed by a network of ST radar and lidar, Annales Geophysicae 19, 953–963.CrossRefGoogle Scholar
  5. Brink, K., Travis, D., and Martinez-Frías, J., 2003: Upper tropospheric conditions associated with recent clear-sky ice falls. 57th Annual Meeting, The Wisconsin Geographical Society, September 19–20, UW-Eau Claire.Google Scholar
  6. Cohn, M. and Urey, H. C., 1938: Oxygen exchange reactions of organic compounds and water, J. Amer. Chem. Soc. 60, 679–687.Google Scholar
  7. Coleman, M. L., Shepherd, T. J., Rouse, J. E., and Moore, G. R., 1982: Reduction of water with zinc for hydrogen isotope analysis, Anal. Chem. 54, 993–995.CrossRefGoogle Scholar
  8. Corliss, W. R., 1983: Ice falls or hydrometeors, in: W. R. Corliss (ed.), Tornados, Dark Days, Anomalous Precipitation and Related Weather Phenomena. A Catalogue of Geophysical Anomalies. The Sourcebook Project. P.O. Box 107, Glen Arm, MD 21057, pp. 40–44.Google Scholar
  9. Craig, H., 1961: Isotopic variations in meteoric waters, Science 133, 1702–1703.Google Scholar
  10. Dansgaard, W., 1964: Stable isotopes in precipitation, Tellus 16-5, 461–469.Google Scholar
  11. Dansgaard, W., Johnsen, S. J., Clauson, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J., and Bond G., 1993: Evidence for general instability in past climate from a 250 kyr ice-core record, Nature 364, 218–220.CrossRefGoogle Scholar
  12. Diamond, R. E. and Harris, C., 1997: Oxygen and hydrogen isotope composition of Western Cape meteoric water, S. Afr. J. Sci. 93, 371–374.Google Scholar
  13. Ebel, A. Feldmann, H., Offermann, D., and Schäler, B., 2000: Meso-scale studies of composition and transport in the tropopause region, AFO2000 Newsletter 2, 7–10.Google Scholar
  14. Ehhalt, D., 1974: Vertical profiles of HTO, HDO, and H2O in the troposphere, NCAR, Natl. Cent. for Atmos. Res., Boulder, Colo. Tech. Note NCAR/-TN/STR-100, 131 pp.Google Scholar
  15. Epstein, S. and Mayeda, T. K. 1953: Variation of the 18O/16O ratio in natural waters, Geochim. Cosmochim. Acta 4, 213–224.CrossRefGoogle Scholar
  16. Facy, L., Merlivat, L., Nief, G. and Roth, E. 1963: The study of the formation of a hail-stone by means of isotopic analysis, J. Geophys. Res. 68, 3841–3848.Google Scholar
  17. Federer, B., Brichet, N., and Jouzel, J., 1982a: Stable isotopes in hailstones 1. The isotopic cloud model, J. Atmos. Sci. 39-6, 1323–1335.Google Scholar
  18. Federer, B., Thalmann, B., and Jouzel, J., 1982b: Stable isotopes in hailstones 2. Embryo and hailstone growth in different storms, J. Atmos. Sci. 39-6, 1336–1355.Google Scholar
  19. Foot, R. and Mitra, S., 2002: Ordinary atom-mirror atom bound states: A new window on the mirror world, Phys. Rev. D 66, 061301.CrossRefGoogle Scholar
  20. Friedman, I., 1953: Deuterium content of natural water and other substances, Geochim. Cosmochim. Acta 4, 89–103.CrossRefGoogle Scholar
  21. Gedzelman, S. D. and Arnold, R., 1994: Modeling the isotopic composition of precipitation, J. Geophys. Res. 99, 10455–10571.CrossRefGoogle Scholar
  22. Griffiths, R. F., 1975: Observation and analysis of an ice hydrometeor of extraordinary size, Met. Mag. 104, 253–260.Google Scholar
  23. He, H. and Smith, R. B., 1999: Stable isotope composition of water vapor in the atmospheric boundary layer above the forests of New England, J. Geophys. Res-Atmospheres 104, 11657–11673.Google Scholar
  24. Hirschberg, P. A. and Fritsch, J. M., 1991: Tropopause undulations and the development of extratropical cyclones: Part II: Diagnostic analysis and conceptual model, Mon. Weat. Rev. 119, 518-550.Google Scholar
  25. Illingworth, A., 1989: Growth of large hailstones, Nature 337 (6209), 691–691.CrossRefGoogle Scholar
  26. Jacob, H. and Sonntag, C., 1991: An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus 43B, 291–300.Google Scholar
  27. Jouzel, J., Merlivat, L., and Roth, E., 1975: Isotopic study of hail, J. Geophys. Res. 80, 5015–5030.CrossRefGoogle Scholar
  28. Jouzel, J., Merlivat, L., and Federer, B., 1985: Isotopic study of hail – the delta-D-delta-O-18 relationship and the growth history of large hailstones, Q. J. Roy. Meteor. Soc. 111, 495–516.CrossRefGoogle Scholar
  29. Leigh, R., 1999: The April 1999 Sydney Hailstorm, Natural Hazard Quaterly 5, 2.Google Scholar
  30. Martínez-Frías, J. and López-Vera, F., 2000: Los bloques de hielo que caen del cielo. Antecedentes y fenomenología reciente, Rev. Ens. Cien. Tierra. 8-2, 130–136.Google Scholar
  31. Martínez-Frías, J., López-Vera, F., García, N., Delgado, A., García, R., and Montero, P., 2000: Hailstones fall from clear Spanish skies, News Notes Geotimes 45–6, 11.Google Scholar
  32. Martínez-Frías, J. and Travis, D., 2002: Megacryometeors: Fall of atmospheric ice blocks from ancient to modern times, in: S. Leroy and I. S. Stewart (eds.), Environmental Catastrophes and Recovery in the Holocene. Abstracts Volume. Brunel University, West London (UK), pp. 54–55.Google Scholar
  33. Martínez-Frías, J., Millán, M., García, N., López-Vera, F., Delgado, A., García, R., Rodríguez-Losada, J. A., Reyes, E., Martín Rubí, J. A., and Gómez-Coedo, A., 2001: Compositional heterogeneity of hailstones: Atmospheric conditions and possible environmental implications, Ambio. 30-7, 452–455.Google Scholar
  34. Martinez-Frias, J. and Rodríguez-Losada, J. A., 2004: Atmospheric megacryometeor events versus small meteorite impacts: Scientific and human perspective of a potential natural hazard. International Council for Science (ICSU) Workshop: Comet/asteroid impacts and human society, November 27–December 2, 2004 Santa Cruz de Tenerife, Tenerife, Canary Islands (Spain) (abstract).Google Scholar
  35. McGuffie, K. and Henderson-Selle, A., 2004: Stable water isotope characterization of human and natural impacts on land-atmosphere exchanges in the Amazon Basin, Journal of Geophysical Research 109, 1–25.Google Scholar
  36. Merlivat, L. and Nief, G., 1967: Isotopic fractionation of the solid-vapor and liquid-vapor changes of state of water a temperatures below 0 C, Tellus 19, 122–127.CrossRefGoogle Scholar
  37. Moreira, M. Z., Sternberg, L. S. L., Martinelli, L. A., Victoria, R. L., Barbosa, E. M., Borates, C. M., and Nepstads, A. C., 1997: Contribution of transpiration to forest ambient vapour based on isotopic measurements, Global Change Biology 3, 439–450.CrossRefGoogle Scholar
  38. National Weather Service Forecast Office, NWSFO, 2002: What about hail? NOAA
  39. Oltmans, S. J. and Hofmann, D. J. 1995: Increase in lower-stratosphere water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994, Nature 374, 146–149.CrossRefGoogle Scholar
  40. Ovarlez, J., Velthoven, P., and Schlager, H., 1999: Water vapor measurements from the troposphere to the lowermost stratosphere: Some signatures of troposphere to stratosphere exchanges, J. Geophys. Res. 104, 16973–16978.CrossRefGoogle Scholar
  41. Park, C. B. and Lee, C. H., 2001: Tropopause folding effect on Ozone Observation measured by Lidar and sonde over Suwon station, NDSC 2001 Symposium, September (Arcachon, France).Google Scholar
  42. Raya, J., 2003: Composición isotópica del vapor de agua atmosférico en el Sureste de la Península Ibérica, Doctoral Thesis Univ. Granada. 418 pp.Google Scholar
  43. Roelofs, G. J., Kentarchos, A. S., Trickl, T., Stohl, A., Collins, W. J., Crowther, R. A., Hauglustaine, D., Klonecki, A., Law, K. S., Lawrence, M. G., von Kuhlmann, R., and van Weele, M., 2003: Intercomparison of tropospheric ozone models: ozone transports in a complex tropopause folding event. J. Geophys. Res. (abstract)
  44. Rozanski, K., Araguás, L., and Gonfiantini, R., 1993: Isotopic patterns in modern global precipitation, in: Climatic Change in Continental Isotopic Records (AGU) Geophysical Monograph 78 pp. 1-36.Google Scholar
  45. Santoyo, E., García, R., Martínez-Frías, J., López-Vera, F., and Verma, S. P., 2002: Capillary Electrophoretic analysis of inorganic anions in atmospheric hailstone samples, Journal Chromatography A 956, 279–286.Google Scholar
  46. Santer, B. D., Wehner, M. F., Wigley, T. M.L., Sausen, R., Meehl, G. A., Taylor, K. E., Ammann, C., Arblaster, J., Washington, W. M., Boyle, J. S., and Brüggemann, W., 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes, Science 301, 479–483.CrossRefGoogle Scholar
  47. Souchez, R. A., Jouzel, J., Lorrain, R., Sleewaegen, S., Stievenard, M., and Verbeke, V., 2000: A kinetic isotope effect during ice formation by water freezing, Geoph. Res. Letters 27-13, 1923–1926.Google Scholar
  48. Sturman, A. P. and Tapper, N., 1996: The Weather and Climate of Australia and New Zealand (Oxford, UK) 476 p.Google Scholar
  49. Taylor, C. B., 1972: The vertical variations of isotopic composition of tropospheric water vapour over continental Europe and their relations to tropospheric structure, Inst. Nucl. Sci. Report. ISN-R-107, 45 pp. Lower Hutt, New Zealand.Google Scholar
  50. Taylor, C. B., 1984: Vertical-distribution of deuterium in atmospheric water-vapor: Problems in application to assess atmospheric condensation models, Tellus (Series B) 36B, 67–70.Google Scholar
  51. Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Henderson, K. A., Cole-Dai, J., Bolzan, J. F., and Liu, K. B. 1995: Late glacial stage and holocene tropical ice core records from Huascarán, Peru, Science 269, 46–50.Google Scholar
  52. Thompson, L. G. T., Yao, T., Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P.-N., 2000, Sep 15: A High-Resolution Millennial Record of the Monsoon from Himalayan Ice Cores, Science pp. 1916–1919.Google Scholar
  53. Wimmers, A. J. and Moody, J. L., 2003: Calibration of GOES water vapor spatial gradients with tropopause folding events, American Meteorological Society Annual Meeting. Abstract. P2.31.Google Scholar
  54. Zahn, A., Barth, V., Pfeilsticker, K., and Platt, U., 1998: Deuterium, oxygen-18, and tritium as tracers for water vapour transport in the lower stratosphere and tropopause region, J. Atmospheric Chem. 30, 25–47.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. Martinez-FrÍAs
    • 1
  • A. Delgado
    • 2
  • M. MillÁN
    • 3
  • E. Reyes
    • 2
  • F. Rull
    • 1
    • 4
  • D. Travis
    • 5
  • R. Garcia
    • 6
  • F. LÓPez-Vera
    • 7
  • J. A. RodrÍGuez-Losada
    • 8
  • J. A. Martin-Rubi
    • 9
  • J. Raya
    • 2
  • E. Santoyo
    • 10
  1. 1.Planetary Geology Laboratory, Centro de Astrobiologia CSIC-INTA)Associated to the NASA Astrobiology InstituteTorrejón de ArdozSpain
  2. 2.Estacion Experimental del ZaidinCSICGranadaSpain
  3. 3.Fundación CEAMParque Tecnológico de PaternaValenciaSpain
  4. 4.Dpto. Física de la Materia Condensada, Cristalografía y Mineralogía, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  5. 5.Department of Geography and GeologyUniversity of Wisconsin-WhitewaterWhitewaterUSA
  6. 6.Museo Nacional de Ciencias Naturales(CSIC)MadridSpain
  7. 7.Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  8. 8.Dep. Edafología y Geología, Fac. BiologíaU. La LagunaI. CanariasSpain
  9. 9.Laboratorios IGMETres CantosSpain
  10. 10.Centro de Investigación en EnergíaUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations