Advertisement

Journal of Oceanography

, Volume 76, Issue 1, pp 15–27 | Cite as

Impacts of subtidal motions and the earth rotation on modal characteristics of the semidiurnal internal tide

  • Zhaoyun Wang
  • Xiaodong HuangEmail author
  • Yunchao Yang
  • Zhiwei Zhang
  • Chun Zhou
  • Wei Zhao
  • Jiwei Tian
Original Article

Abstract

Subtidal motions, such as large-scale circulations and mesoscale eddies, frequently occupy on the propagation path of internal waves in the ocean. Through solving a modified Taylor–Goldstein equation with subtidal currents, density stratification, and the earth rotation, this study investigates the impacts of subtidal motions and the earth rotation on the modal characteristics of the semidiurnal internal tide (SIT) based on long-term mooring measurements in the northern South China Sea (SCS). It is shown that the modal characteristics of the SIT are significantly influenced by the time-varying subtidal current and density stratification associated with energetic subtidal motions in the northern SCS. The earth rotation plays a minor role in modulating the modal characteristics of the SIT in the northern SCS, but it becomes effective at middle and high latitudes when strong subtidal current shear associated with subtidal motions is present. Moreover, the strong subtidal current associated with subtidal motions may significantly affect the critical latitude of the SIT. The observational results reported here will help to improve our understanding of the modal characteristics of internal tides under the influence of subtidal motions in global oceans.

Keywords

Internal tide Modal characteristic Subtidal motion Rotation 

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFC1402605), National Natural Science Foundation of China (Grants 41506011, 41676011, and 41706005), Qingdao National Laboratory for Marine Science and Technology (Grant 2015ASKJ01), Key Research and Development Program of Shandong (Grant 2016CYJS02A03), Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant 41521091), NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant U1406402), and Global Change and AirSea Interaction Project (Grant nos. GASI-03-01-01-03, GASI-IPOVAI-01-03, and GASI-IPOVAI-01-02). The altimeter product was produced by SSALTO/DUCAS and distributed by AVISO, with support from CNES (available online at http://www.aviso.oceanobs.com/duacs). The HYCOM product is downloaded from the website at http://hycom.org/. The processed mooring data used in the work will be available from Ocean and Atmosphere Data Center, Ocean University of China, at http://coadc.ouc.edu.cn/index.php/Index/dataset/id/38?l=en-us?l=zh-cn, and now are available from the authors upon request as data collection is ongoing.

References

  1. Alford MH (2003) Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423:159–162.  https://doi.org/10.1038/nature01628 CrossRefGoogle Scholar
  2. Alford MH, Zhao Z (2007a) Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J Phys Oceanogr 37(7):1829–1848CrossRefGoogle Scholar
  3. Alford MH, Zhao Z (2007b) Global patterns of low-mode internal-wave propagation. Part II: Group velocity. J Phys Oceanogr 37(7):1849–1858CrossRefGoogle Scholar
  4. Alford MH, Lien RC, Simmons H et al (2010) Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr 40(6):1338–1355CrossRefGoogle Scholar
  5. Alford MH, MacKinnon JA, Nash JD et al (2011) Energy flux and dissipation in Luzon Strait: two tales of two ridges. J Phys Oceanogr 41(11):2211–2222.  https://doi.org/10.1175/JPO-D-11-073.1 CrossRefGoogle Scholar
  6. Alford MH, Peacock T, MacKinnon JA et al (2015) The formation and fate of internal waves in the South China Sea. Nature 521(7550):65–69.  https://doi.org/10.1038/nature14399 CrossRefGoogle Scholar
  7. Carter GS, Fringer OB, Zaron ED (2012) Regional models of internal tides. Oceanography 25(2):56–65CrossRefGoogle Scholar
  8. Chen S, Chen D, Xing J, Hu J, Sun Z (2019) Features of internal tides observed near the shelf break in the northern south china sea. Ocean Dyn 69(3):353–365CrossRefGoogle Scholar
  9. Da Silva JCB, Buijsman MC, Magalhaes JM (2015) Internal waves on the upstream side of a large sill of the Mascarene Ridge: a comprehensive view of their generation mechanisms and evolution. Deep Sea Res Part I Oceanogr Res Papers 99:87–104CrossRefGoogle Scholar
  10. Dunphy M, Lamb KG (2014) Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J Geophys Res Oceans 119:523–536CrossRefGoogle Scholar
  11. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405(6788):775–778CrossRefGoogle Scholar
  12. Garrett C, Kunze E (2007) Internal tide generation in the deep ocean. Annu Rev Fluid Mech 39:57–87CrossRefGoogle Scholar
  13. Gill A (1982) Atmosphere-ocean dynamics. Academic Press, New YorkGoogle Scholar
  14. Huang X, Zhang Z, Zhang X, Qian H, Zhao W, Tian J (2017) Impacts of a mesoscale eddy pair on internal solitary waves in the northern South China Sea revealed by mooring array observations. J Phys Oceanogr 47(7):1539–1554CrossRefGoogle Scholar
  15. Huang X, Wang Z, Zhang Z, Yang Y, Zhou C, Yang Q, Zhao W, Tian J (2018) Role of mesoscale eddies in modulating the semidiurnal internal tide: observation results in the northern South China Sea. J Phys Oceanogr 48(8):1749–1770CrossRefGoogle Scholar
  16. Klymak JM, Alford MH, Pinkel R, Lien RC, Yang YJ, Tang TY (2011) The breaking and scattering of the internal tide on a continental slope. J Phys Oceanogr 41(5):926–945CrossRefGoogle Scholar
  17. Laurent LCS (2008) Turbulent dissipation on the margins of the South China Sea. Geophys Res Lett 35(23):L23615CrossRefGoogle Scholar
  18. Laurent LCS, Nash JD (2004) An examination of the radiative and dissipative properties of deep ocean internal tides. Deep Sea Res Part II Topical Stud Oceanogr 51(25–26):3029–3042CrossRefGoogle Scholar
  19. Lee I-H, Wang YH, Yang Y, Wang DP (2012) Temporal variability of internal tides in the northeast South China Sea. J Geophys Res.  https://doi.org/10.1029/2011JC007518 CrossRefGoogle Scholar
  20. Lelong MP, Riley JJ (1991) Internal wave–vortical mode interactions in strongly stratified flows. J Fluid Mech 232:1–19CrossRefGoogle Scholar
  21. Liu J, He Y, Wang D, Liu T, Cai S (2015) Observed enhanced internal tides in winter near the Luzon Strait. J Geophys Res 120(10):6637–6652CrossRefGoogle Scholar
  22. Magalhães JM, da Silva JCB, Buijsman MC, Garcia CAE (2016) Effect of the North Equatorial Counter Current on the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations). Ocean Sci 12(1):243–255CrossRefGoogle Scholar
  23. Miles J (1961) On the stability of heterogeneous shear flows. J Fluid Mech 10:496–508CrossRefGoogle Scholar
  24. Munk W, Wunsch C (1998) Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res Part I Oceanogr Res Papers 45(12):1977–2010CrossRefGoogle Scholar
  25. Nash JD, Alford MH, Kunze E (2005) Estimating internal wave energy fluxes in the ocean. J Atmos Ocean Technol 22(10):1551–1570CrossRefGoogle Scholar
  26. Nash JD, Kunze E, Lee CM, Sanford TB (2006) Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J Phys Oceanogr 36(6):1123–1135CrossRefGoogle Scholar
  27. Pickering A, Alford M, Nash J, Rainville L, Buijsman M, Ko DS, Lim B (2015) Structure and variability of internal tides in Luzon Strait. J Phys Oceanogr 45(6):1574–1594CrossRefGoogle Scholar
  28. Qian H, Shaw PT, Ko DS (2010) Generation of internal waves by barotropic tidal flow over a steep ridge. Deep Sea Res Part I Oceanogr Res Papers 57(12):1521–1531CrossRefGoogle Scholar
  29. Shang X, Liu Q, Xie X, Chen G, Chen R (2015) Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep Sea Res Part I Oceanogr Res Papers 98:43–52CrossRefGoogle Scholar
  30. Wunsch C, Ferrari R (2004) Vertical mixing, energy, and the general circulation of the oceans. Annu Rev Fluid Mech 36:281–314CrossRefGoogle Scholar
  31. Xu Z, Yin B, Hou Y, Xu Y (2013) Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J Geophys Res 118(1):197–211CrossRefGoogle Scholar
  32. Xu Z, Liu K, Yin B, Zhao Z, Wang Y, Li Q (2016) Long-range propagation and associated variability of internal tides in the South China Sea. J Geophys Res 121(11):8268–8286CrossRefGoogle Scholar
  33. Yang Q, Zhao W, Liang X, Tian J (2016) Three-dimensional distribution of turbulent mixing in the South China Sea. J Phys Oceanogr 46(3):769–788CrossRefGoogle Scholar
  34. Zhang Z, Tian J, Qiu B, Zhao W, Chang P, Wu D, Wan X (2016) Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci Rep 6:24349CrossRefGoogle Scholar
  35. Zhang Z, Zhao W, Qiu B, Tian J (2017) Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J Phys Oceanogr 47(6):1243–1259CrossRefGoogle Scholar
  36. Zhang Z, Qiu B, Tian J, Zhao W, Huang X (2018) Latitude-dependent finescale turbulent shear generations in the Pacific tropical-extratropical upper ocean. Nat Commun.  https://doi.org/10.1038/s41467-018-06260-8 CrossRefGoogle Scholar
  37. Zhao Z (2014) Internal tide radiation from the Luzon Strait. J Geophys Res 119(8):5434–5448CrossRefGoogle Scholar
  38. Zhao Z (2017) The global mode-1 S2 internal tide. J Geophys Res 122(4):8794–8812.  https://doi.org/10.1002/2017JC013112 CrossRefGoogle Scholar
  39. Zhao Z, Alford MH, MacKinnon JA, Pinkel R (2010) Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge. J Phys Oceanogr 40(4):713–736.  https://doi.org/10.1175/2009JPO4207.1 CrossRefGoogle Scholar
  40. Zhao Z, Alford MH, Girton J, Johnston TMS, Carter G (2011) Internal tides around the Hawaiian Ridge estimated from multisatellite altimetry. J Geophys Res 116:C12039.  https://doi.org/10.1029/2011JC007045 CrossRefGoogle Scholar
  41. Zhao Z, Alford MH, Lien RC, Gregg MC, Carter GS (2012) Internal tides and mixing in a submarine canyon with time-varying stratification. J Phys Oceanogr 42(12):2121–2142CrossRefGoogle Scholar
  42. Zhao Z, Alford MH, Girton JB, Rainville L, Simmons HL (2016) Global observations of open-ocean mode-1 M2 internal tides. J Phys Oceanogr 46(6):1657–1684.  https://doi.org/10.1175/JPO-D-15-0105.1 CrossRefGoogle Scholar
  43. Zhao Z, Alford MH, Simmons HL, Braznikov D, Pinkel R (2018) Satellite investigation of the M2 internal tide in the Tasman Sea. J Phys Oceanogr 48(3):687–703CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhaoyun Wang
    • 1
  • Xiaodong Huang
    • 1
    Email author
  • Yunchao Yang
    • 1
  • Zhiwei Zhang
    • 1
  • Chun Zhou
    • 1
  • Wei Zhao
    • 1
  • Jiwei Tian
    • 1
  1. 1.Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and TechnologyOcean University of ChinaQingdaoChina

Personalised recommendations