Journal of Oceanography

, Volume 74, Issue 5, pp 523–539 | Cite as

The different relationship of Pacific interior subtropical cells and two types of ENSO

  • Junqiao Feng
  • Dunxin Hu
  • Fei-fei Jin
  • Fan Jia
  • Qingye Wang
  • Shoude Guan
Original Article


The Pacific interior subtropical−tropical cells (STCs) and their relation to the two types of El Niño-Southern Oscillation (ENSO) are investigated by using GODAS reanalysis ocean data for the period of 1980–2017. The results show that the interior STC transport into the equatorial region across 9°S and 9°N has a close relationship with the eastern Pacific (EP) ENSO, while it is much weaker with the central Pacific (CP) ENSO. It is suggested that the effect of interior STCs on the tropical Pacific climate is reflected in its relation with the western Pacific thermocline depth or SSHA. During the EP El Niño, the anomalous interior STCs at 9°S and 9°N converge to the equatorial region from the lag months of − 25 to − 8, leading to an accumulation of heat content in the equatorial Pacific; from the lag months of − 8 to 10, they diverge poleward, inducing a discharge of equatorial heat content. The peak poleward interior STC anomaly first appears at 9°N at a zero-lag time, while that at 9°S is observed 4–5 months later. But there is also no appearance of a time lag between the interior STCs at 9°N and 9°S in recharging the period during the EP La Niña mature phase. However, during CP El Niño, only the conspicuous anomalous interior STC divergence appears during the mature and decay phases for the lag months of − 2 to 10, with being symmetric at 9°N and 9°S.


Pacific Ocean Subtropical–tropical cells El Niño-Southern oscillation Eastern Pacific El Niño Central Pacific El Niño 



The GODAS and NOAA_ERSST_V4 data, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, are from the web site at This work was supported by the Natural Science Foundation of China (NSFC) (nos. 41476017, 41330963, 41506016, 41576014, 41506023), NSFC-Shandong Joint Fund for Marine Science Research Centers (no. U1406401), and Fund for Innovative Research Groups of the NSFC (no. 41421005).


  1. Andersson HC, Stigebrandt A (2005) Regulation of the Indonesian throughflow by baroclinic draining of the North Australian Basin. Deep Sea Res Part I 52(12):2214–2233CrossRefGoogle Scholar
  2. Ashok K, Behera SK, Rao SA, Weng HY (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. CrossRefGoogle Scholar
  3. Ballester J, Petrova D, Bordoni S, Cash B, Rodó X (2017) Timing of subsurface heat magnitude for the growth of El Niño events. Geophys Res Lett 44:8501–8509CrossRefGoogle Scholar
  4. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15Google Scholar
  5. Behringer DW, Ji M, Leetma A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon Weather Rev 126:1013–1021CrossRefGoogle Scholar
  6. Bjornsson H, Venegas SA (1997) A manual for EOF and SVD analyses of climatic data. C2GCR Rep 97(1):52Google Scholar
  7. Capotondi A, Alexander MA, Deser C, McPhaden MJ (2005) Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J Clim 18(18):3739–3758CrossRefGoogle Scholar
  8. Capotondi A, Wittenberg AT, Newmaman M et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938CrossRefGoogle Scholar
  9. Chen G (2011) How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J Clim 24:4695–4700CrossRefGoogle Scholar
  10. Chen S, Qiu B (2004) Seasonal variability of the South equatorial countercurrent. J Geophys Res. Google Scholar
  11. Chen HC, Sui CH, Tseng YH, Huang BH (2015) Analysis of the linkage of pacific subtropical cells with the recharge–discharge processes in ENSO evolution. J Clim 28:3786–3805CrossRefGoogle Scholar
  12. Choi J, An SI, Kug JS, Yeh SW (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215CrossRefGoogle Scholar
  13. Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26(2):361–379CrossRefGoogle Scholar
  14. Derber JC, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19:1333–1347CrossRefGoogle Scholar
  15. Farneti R, Molteni F, Kucharski F (2014) Pacific interdecadal variability driven by tropical–extratropical interactions. Clim Dyn 42:3337–3355CrossRefGoogle Scholar
  16. Feng J, Li JP (2011) Influence of El Niño Modoki on spring rainfall over South China. J Geophys Res 116:D13102. CrossRefGoogle Scholar
  17. Feng JQ, Jin FF, Hu DX, Guan SD (2018) Oceanic processes of upper ocean heat content associated with two types of ENSO. J Oceanogr 74(2):219–238CrossRefGoogle Scholar
  18. Gordon A (2005) Oceanography of the Indonesian seas and their throughflow. Oceanography 18:14–27CrossRefGoogle Scholar
  19. Gordon A, Sprintall J, Van Aken HM et al (2010) The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn Atmos Ocean 50:115–128CrossRefGoogle Scholar
  20. Hasegawa T, Horii T, Hanawa K (2006) Two different features of discharge of equatorial upper ocean heat content related to El Niño events. Geophys Res Lett 33:L02609. CrossRefGoogle Scholar
  21. Hoerling M, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786CrossRefGoogle Scholar
  22. Hu SJ, Sprintall J (2016) Interannual variability of the Indonesian throughflow: the salinity effect. J Geophys Res Oceans 121:2596–2615CrossRefGoogle Scholar
  23. Hu DX, Wang F, Wu LX, Chen DK, Liu QY, Tian JW, Yuan DL, Mayer B, Adi R, Ando K, Kashino Y, Masumoto Y, Lee JH, Jeon D, Villanoy C, Gordon A, Kessler W, Qiu B, Qu TD, Riser S, Susanto D, Zhang DX (2011) Northwestern Pacific Ocean circulation and climate experiment (NPOCE) science/implementation plan. China Ocean Press, FujianGoogle Scholar
  24. Hu ZZ, Kumar A, Bhaskar J, Wang WQ, Huang BH, Huang BY (2012) An analysis of warm pool and cold tongue El Niños: air–sea coupling processes, global influences, and recent trends. Clim Dyn 38(9–10):2017–2035CrossRefGoogle Scholar
  25. Hu SJ, Hu DX, Guan C, Wang F, Zhang LL, Wang FJ, Wang QY (2016) Interannual variability of the Mindanao current/undercurrent in direct observations and numerical simulations. J Phys Oceanogr 46:483–499CrossRefGoogle Scholar
  26. Huang B, Liu Z (1999) Pacific subtropical–tropical thermocline water exchange in the National Centers for Environmental Prediction ocean model. J Geophys Res 104:11065–11076CrossRefGoogle Scholar
  27. Ishida A, Kashino Y, Hosoda S, Ando K (2008) North–south asymmetry of warm water volume transport related with El Niño variability. Geophys Res Lett 35:L18612. CrossRefGoogle Scholar
  28. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  29. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Atmos Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  30. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  31. Kim HM, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80CrossRefGoogle Scholar
  32. Klinger BA, Marotzke J (2000) Meridional heat transport by the subtropical cell. J Phys Oceanogr 30:696–705CrossRefGoogle Scholar
  33. Kug J, Kang I, An S (2003) Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J Geophys Res 108(C8):3284. CrossRefGoogle Scholar
  34. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515CrossRefGoogle Scholar
  35. Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239CrossRefGoogle Scholar
  36. Lee T, Fukumori I (2003) Interannual-to-decadal variations of tropical–subtropical exchange in the Pacific Ocean: boundary versus interior pycnocline transport. J Clim 16:4022–4042CrossRefGoogle Scholar
  37. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central–equatorial Pacific. Geophys Res Lett 37:L14603. Google Scholar
  38. Lohmann K, Latif M (2005) Tropical Pacific decadal variability and the subtropical–tropical cells. J Clim 18:5163–5178CrossRefGoogle Scholar
  39. Lu P, McCreary JP, Klinger BA (1998) Meridional circulation cells and the source waters of the Pacific equatorial undercurrent. J Phys Oceanogr 28:62–84CrossRefGoogle Scholar
  40. Lukas R, Firing E, Hacker P, Richardson PL, Collins CA, Fine R, Gammon R (1991) Observations of the Mindanao current during the western equatorial Pacific Ocean circulation study. J Geophys Res 96:7089–7104CrossRefGoogle Scholar
  41. McCreary JP, Lu P (1994) Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J Phys Oceanogr 24:466–497CrossRefGoogle Scholar
  42. McPhaden MJ, Zhang DX (2002) Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415:603–608CrossRefGoogle Scholar
  43. McPhaden MJ, Zhang DX (2004) Pacific Ocean circulation rebounds. Geophys Res Lett 31:L18301. CrossRefGoogle Scholar
  44. McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett 36:L13703. CrossRefGoogle Scholar
  45. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. CrossRefGoogle Scholar
  46. Meyers G (1979) On the annual Rossby wave in the tropical North Pacific Ocean. J Phys Oceanogr 9:663–674CrossRefGoogle Scholar
  47. Nonaka M, Xie SP, McCreary JP (2002) Decadal variations on the subtropical cells and equatorial Pacific SST. Geophys Res Lett. Google Scholar
  48. Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23(21):5826–5843CrossRefGoogle Scholar
  49. Overland JE, Preisendorfer RW (1982) A significance test for principal components applied to a cyclone climatology. Mon Weather Rev 110:1–4CrossRefGoogle Scholar
  50. Qiu B (2003) Kuroshio extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J Phys Oceanogr 33:2465–2482CrossRefGoogle Scholar
  51. Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38:L04704. CrossRefGoogle Scholar
  52. Richman MB (1985) Rotation of principal components. Int J Climatol 6:293–335CrossRefGoogle Scholar
  53. Rothstein LM, Zhang RH, Busalacchi AJ, Chen D (1998) A numerical simulation of the mean water pathways in the subtropical and tropical Pacific Ocean. J Phys Oceanogr 28:322–343CrossRefGoogle Scholar
  54. Singh A, Delcroix T (2013) Eastern and central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep Sea Res I 82:32–43CrossRefGoogle Scholar
  55. Sprintall J, Wijffels SE, Molcard R, Jaya I (2009) Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. J Geophys Res 114:C07001. CrossRefGoogle Scholar
  56. Sprintall J, Gordon AL, Koch-Larrouy A et al (2014) The Indonesian seas and their role in the coupled ocean–climate system. Nat Geosci 7:487–492CrossRefGoogle Scholar
  57. Wang QY, Zhai FG, Wang FJ, Hu DX (2014) Intraseasonal variability of the subthermocline current east of Mindanao. J Geophys Res 119(12):8552–8566. CrossRefGoogle Scholar
  58. Weng HY, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:123–129CrossRefGoogle Scholar
  59. White W (1977) Annual forcing of baroclinic long waves in the tropical North Pacific Ocean. J Phys Oceanogr 7:50–61CrossRefGoogle Scholar
  60. Wijffels S, Firing E, Toole J (1995) The mean structure and variability of the Mindanao current at 8°N. J Geophys Res 100:18421–18435CrossRefGoogle Scholar
  61. Yamanaka G, Tsujino H, Nakano H, Hirabara M (2015) Decadal variability of the Pacific subtropical cells and its relevance to the sea surface height in the western tropical Pacific during recent decades. J Geophys Res Oceans 120:201–224. CrossRefGoogle Scholar
  62. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman B, Jin FF (2009) El Niño in a changing climate. Nature 461:511–515CrossRefGoogle Scholar
  63. Yeh SW, Wang X, Wang C, Dewitte B (2015) On the relationship between the North Pacific climate variability and Central Pacific El Nino. J Clim 28:663–677CrossRefGoogle Scholar
  64. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. CrossRefGoogle Scholar
  65. Yu JY, Zou Y (2013) The enhanced drying effect of Central-Pacific El Niño on US winter. Environ Res Lett. Google Scholar
  66. Zhang DX, McPhaden MJ (2006) Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models. Ocean Model 15(3–4):250–273CrossRefGoogle Scholar
  67. Zhang T, Sun DZ, Neale R, Rasch PJ (2009) An evaluation of ENSO asymmetry in the community climate system models: a view from the subsurface. J Clim 22:5933–5961CrossRefGoogle Scholar
  68. Zhang W, Jin FF, Li J, Ren HL (2011) Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J Meteorol Soc Jpn 89:563–569CrossRefGoogle Scholar
  69. Zhang LL, Hu DX, Hu SJ, Wang F, Wang FJ, Yuan DL (2014) Mindanao Current/undercurrent measured by a subsurface mooring. J Geophys Res 119:3617–3628CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory of Ocean Circulation and Waves, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  3. 3.Laboratory for Ocean and Climate DynamicsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Department of Atmospheric Sciences, SOESTUniversity of Hawai’i at MānoaHonoluluUSA

Personalised recommendations