Journal of Oceanography

, Volume 74, Issue 3, pp 277–286 | Cite as

Variability in the production of organic ligands, by Synechococcus PCC 7002, under different iron scenarios

  • Guillermo Samperio-Ramos
  • J. Magdalena Santana-Casiano
  • Melchor González-Dávila
Original Article


Several Fe-uptake mechanisms suggest the importance of the presence of certain organic ligands in phytoplankton exudates. Here, it has been studied how Synechococcus (strain PCC 7002) acclimates to Fe-bioavailability, comparing the growth and organic exudation under two different Fe regimes. These cyanobacteria were incubated in UV-treated seawater supplemented only with major nutrients and two different iron scenarios (Low-Fe and High-Fe), without chelating agents, in order to analyze the organic ligands production. The levels of dissolved organic carbon (DOC) and two natural ligands (hydroxamic and phenolic moieties) were monitored. The responses in the organic extracellular release rates (ER), normalized per cell, were statistically analyzed considering Fe scenarios and different development stages. Growth of Synechococcus was significantly slower under Low-Fe treatment, suggesting that these cultures were iron limited compared to those flourished with higher levels of iron in the medium. Although the concentration of DOC increased to 127.13 ± 8.38 and 150.51 ± 8.59 μmol C L−1 under Low-Fe and High-Fe conditions, respectively, no-significant variations were found in the DOCER, among growth phases and iron bioavailability scenarios. Under High-Fe conditions, the production of hydroxamic ligands was inhibited, while the extracellular release rate of phenolic compounds decreased, regarding to Low-Fe conditions. Growth phases of Synechococcus also modified the extracellular release rates both of hydroxamic and phenolic moieties. The present study, therefore, demonstrates that iron availability and growth stages might be key parameters in regulating the release performance of extracellular Fe-specific organic ligands by cyanobacteria.


Synechococcus Iron Extracellular release Organic ligands Cyanobacteria Fe-bioavailability 



This study received supported from EACFe Project (CTM2014-52342-P) of the Ministerio de Economía y Competitividad of Spain. G. S. R. participation was supported by the Grant BES-2011-051448 of the Ministerio de Economía y Competitividad. The authors thank Dr. Javier Aristegui and IOCAG for the measurements of dissolved organic carbon. We gratefully acknowledge the comments and suggestions of the anonymous reviewers.

Supplementary material

10872_2017_457_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Achterberg EP, Holland TW, Bowie AR et al (2001) Determination of iron in seawater. Anal Chim Acta 442:1–14. CrossRefGoogle Scholar
  2. Adly CL, Tremblay J-E, Powell RT et al (2015) Response of heterotrophic bacteria in a mesoscale iron enrichment in the northeast subarctic Pacific Ocean. Limnol Oceanogr 60:136–148. CrossRefGoogle Scholar
  3. Aeschbacher M, Graf C, Schwarzenbach RP, Sander M (2012) Antioxidant properties of humic substances antioxidant properties of humic substances. Environ Sci Technol 46:4916–4925. CrossRefGoogle Scholar
  4. Annett AL, Lapi S, Ruth TJ, Maldonado MT (2008) The effects of Cu and Fe availability on the growth and Cu: C ratios of marine diatoms. Limnol Oceanogr 53:2451–2461. CrossRefGoogle Scholar
  5. Arístegui J, Duarte CM, Reche I, Gómez-Pinchetti JL (2014) Krill excretion boosts microbial activity in the Southern Ocean. PLoS ONE 9:e89391. CrossRefGoogle Scholar
  6. Armbrecht LH, Thompson PA, Wright SW et al (2015) Comparison of the cross-shelf phytoplankton distribution of two oceanographically distinct regions off Australia. J Mar Syst 148:26–38. CrossRefGoogle Scholar
  7. Armstrong JE, van Baalen C (1979) Iron transport in microalgae: the isolation and biological activity of a hydroxamate siderophore from the blue-green alga Agmenellum quadruplicatum. J Gen Microbiol 111:253–262. CrossRefGoogle Scholar
  8. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalaninetyrosine mixtures. J Biol Chem 118:531–537Google Scholar
  9. Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413. CrossRefGoogle Scholar
  10. Barofsky A, Vidoudez C, Pohnert G (2009) Metabolic profiling reveals growth stage variability in diatom exudates. Limnol Oceanogr Methods 7:382–390. CrossRefGoogle Scholar
  11. Becker JW, Berube PM, Follett CL et al (2014) Closely related phytoplankton species produce similar suites of dissolved organic matter. Front Microbiol 5:1–14. CrossRefGoogle Scholar
  12. Behrenfeld MJ, Milligan AJ (2011) Photophysiological expressions of iron stress in phytoplankton. Ann Rev Marine Sci 5:120717164858000. Google Scholar
  13. Biddanda B, Benner R (1997) Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol Oceanogr 42:506–518. CrossRefGoogle Scholar
  14. Boiteau RM, Repeta DJ (2015) An extended siderophore suite from Synechococcus sp. PCC 7002 revealed by LC-ICPMS-ESIMS. Metallomics 7:877–884. CrossRefGoogle Scholar
  15. Boiteau RM, Fitzsimmons JN, Repeta DJ, Boyle EA (2013) Detection of iron ligands in seawater and marine cyanobacteria cultures by high-performance liquid chromatography—inductively coupled plasma-mass spectrometry. Anal Chem 85:4357–4362CrossRefGoogle Scholar
  16. Borchard C, Engel A (2015) Size-fractionated dissolved primary production and carbohydrate composition of the coccolithophore Emiliania huxleyi. Biogeosciences 12:1271–1284. CrossRefGoogle Scholar
  17. Boyd PW, Tagliabue A (2015) Using the L* concept to explore controls on the relationship between paired ligand and dissolved iron concentrations in the ocean. Mar Chem 173:52–66. CrossRefGoogle Scholar
  18. Boye M, van Den Berg CMG (2000) Iron availability and the release of iron-complexing ligands by Emiliania huxleyi. Mar Chem 70:277–287. CrossRefGoogle Scholar
  19. Boye M, van den Berg CMG, de Jong JTM et al (2001) Organic complexation of iron in the Southern Ocean. Deep Sea Res Part I 48:1477–1497. CrossRefGoogle Scholar
  20. Boye M, Nishioka J, Croot PL et al (2005) Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271. CrossRefGoogle Scholar
  21. Boye M, Aldrich A, van den Berg CMG et al (2006) The chemical speciation of iron in the north-east Atlantic Ocean. Deep Sea Res Part I 53:667–683. CrossRefGoogle Scholar
  22. Butler A, Theisen RM (2010) Iron(III)-siderophore coordination chemistry: reactivity of marine siderophores. Coord Chem Rev 254:288–296. CrossRefGoogle Scholar
  23. Cadier M, Gorgues T, Sourisseau M et al (2017) Assessing spatial and temporal variability of phytoplankton communities’ composition in the Iroise Sea ecosystem (Brittany, France): a 3D modeling approach. Part 1: biophysical control over plankton functional types succession and distribution. J Mar Syst 165:47–68. CrossRefGoogle Scholar
  24. Caprara S, Buck KN, Gerringa LJA et al (2016) A compilation of iron speciation data for open oceanic waters. Front Marine Sci 3:1–7. CrossRefGoogle Scholar
  25. Carlson CA, Hansell DA (2015) Chapter 3 - DOM Sources, Sinks, Reactivity, and Budgets. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Boston, pp 65–126CrossRefGoogle Scholar
  26. Celis-Plá PSM, Bouzon ZL, Hall-Spencer JM et al (2016) Seasonal biochemical and photophysiological responses in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta). Marine Environ Res 115:89–97. CrossRefGoogle Scholar
  27. Elhabiri M, Carrër C, Marmolle F, Traboulsi H (2007) Complexation of iron(III) by catecholate-type polyphenols. Inorg Chim Acta 360:353–359. CrossRefGoogle Scholar
  28. Engel A, Zondervan I, Aerts K et al (2005) Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol Oceanogr 50:493–507. CrossRefGoogle Scholar
  29. Flynn KJ, Clark DR, Xue Y (2008) Modeling the release of dissolved organic matter by phytoplankton. J Phycol 44:1171–1187. CrossRefGoogle Scholar
  30. Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301. CrossRefGoogle Scholar
  31. Gerringa LJ, de Baar HJ, Timmermans K (2000) A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar Chem 68:335–346. CrossRefGoogle Scholar
  32. Gillam AH, Lewis AG, Andersen RJ (1981) Quantitative determination of hydroxamic acids. Anal Chem 53:841–844. CrossRefGoogle Scholar
  33. Gledhill M, Buck KN (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3:69. Google Scholar
  34. Gledhill M, Van Den Berg CMG, Nolting RF, Timmermans KR (1998) Variability in the speciation of iron in the northern North Sea. Mar Chem 59:283–300. CrossRefGoogle Scholar
  35. Gledhill M, McCormack P, Ussher S et al (2004) Production of siderophore type chelates by mixed bacterioplankton populations in nutrient enriched seawater incubations. Mar Chem 88:75–83. CrossRefGoogle Scholar
  36. González-Dávila M, Santana-Casiano JM, Millero FJ (2006) Competition Between O2 and H2O2 in the oxidation of Fe(II) in natural waters. J Solut Chem 35:95–111. CrossRefGoogle Scholar
  37. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean. A controversy stimulates new insights. Oceanography 22:202–211CrossRefGoogle Scholar
  38. Hassler CS, Alasonati E, Mancuso Nichols CA, Slaveykova VI (2011) Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean—role in Fe binding, chemical reactivity, and bioavailability. Mar Chem 123:88–98. CrossRefGoogle Scholar
  39. Hassler CS, Norman L, Mancuso Nichols CA et al (2015) Iron associated with exopolymeric substances is highly bioavailable to oceanic phytoplankton. Mar Chem 173:136–147. CrossRefGoogle Scholar
  40. Heller MI, Wuttig K, Croot PL (2016) Identifying the Sources and Sinks of CDOM/FDOM across the Mauritanian Shelf and their potential role in the decomposition of superoxide (O2 ). Front Marine Sci 3:132. CrossRefGoogle Scholar
  41. Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657. CrossRefGoogle Scholar
  42. Ibisanmi E, Sander SG, Boyd PW et al (2011) Vertical distributions of iron-(III) complexing ligands in the Southern Ocean. Deep Sea Res Part II 58:2113–2125. CrossRefGoogle Scholar
  43. Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923. CrossRefGoogle Scholar
  44. Jiang H-B, Lou W-J, Ke W-T et al (2014) New insights into iron acquisition by cyanobacteria: an essential role for ExbB–ExbD complex in inorganic iron uptake. ISME J 9:1–13. Google Scholar
  45. Jin P, Wang T, Liu N et al (2015) Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Commun 6:8714. CrossRefGoogle Scholar
  46. Kpper FC, Carrano CJ, Kuhn JU, Butler A (2006) Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45:6028–6033. CrossRefGoogle Scholar
  47. Kranzler C, Lis H, Finkel OM et al (2014) Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. ISME J 8:409–417. CrossRefGoogle Scholar
  48. Kuma K, Nakabayashi S, Suzuki Y, Matsunaga K (1992) Dissolution rate and solubility of colloidal hydrous ferric oxide in seawater. Mar Chem 38:133–143. CrossRefGoogle Scholar
  49. Kuma K, Nishioka J, Matsunaga K (1996) Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol Oceanogr 41:396–407. CrossRefGoogle Scholar
  50. Kuma K, Katsumoto A, Nishioka J, Matsunaga K (1998) Size-fractionated iron concentrations and Fe(III) hydroxide solubilities in various coastal waters. Estuar Coast Shelf Sci 47:275–283. CrossRefGoogle Scholar
  51. Laglera LM, Battaglia G, van den Berg CMG (2007) Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron. Anal Chim Acta 599:58–66. CrossRefGoogle Scholar
  52. Langmyhr FJ, Klausen KS (1963) Complex formation of iron (III) with chrome azurol S. Anal Chim Acta 29:149–167. CrossRefGoogle Scholar
  53. Lelong A, Bucciarelli E, Hégaret H, Soudant P (2013) Iron and copper limitations differently affect growth rates and photosynthetic and physiological parameters of the marine diatom Pseudo-nitzschia delicatissima. Limnol Oceanogr 58:613–623. CrossRefGoogle Scholar
  54. Li H, Cheng K, Wong C et al (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776. CrossRefGoogle Scholar
  55. Lis H, Shaked Y, Kranzler C et al (2015) Iron bioavailability to phytoplankton: an empirical approach. ISME J 9:1003–1013. CrossRefGoogle Scholar
  56. Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54. CrossRefGoogle Scholar
  57. Liu SW, Qiu BS (2012) Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae). Mar Biol 159:519–532. CrossRefGoogle Scholar
  58. Liu S, Juneau P, Qiu B (2012) Effects of iron on the growth and minimal fluorescence yield of three marine Synechococcus strains (Cyanophyceae). Phycol Res 60:61–69. CrossRefGoogle Scholar
  59. López A, Rico M, Santana-Casiano JM et al (2015) Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res 22:14820–14828. CrossRefGoogle Scholar
  60. López-Alarcón C, Denicola A (2013) Evaluating the antioxidant capacity of natural products: a review on chemical and cellular-based assays. Anal Chim Acta 763:1–10. CrossRefGoogle Scholar
  61. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  62. Meon B, Kirchman DL (2001) Dynamics and molecular composition of dissolved organic material during experimental phytoplankton blooms. Mar Chem 75:185–199. CrossRefGoogle Scholar
  63. Moran MA, Kujawinski EB, Stubbins A et al (2016) Deciphering ocean carbon in a changing world. Proc Natl Acad Sci 113:3143–3151. CrossRefGoogle Scholar
  64. Morel FMM, Kustka AB, Shaked Y (2008) The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol Oceanogr 53:400–404CrossRefGoogle Scholar
  65. Morrissey J, Bowler C (2012) Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 3:1–13. CrossRefGoogle Scholar
  66. Payne SM (1994) Bacterial pathogenesis part A: identification and regulation of virulence factors. In: Clark V (ed) Bavoil P. Academic Press, CambridgeGoogle Scholar
  67. Pereira M, Tala F, Fernández M, Subida MD (2015) Effects of kelp phenolic compounds on the feeding-associated mobility of the herbivore snail Tegula tridentata. Marine Environ Res 112(1):40–47. CrossRefGoogle Scholar
  68. Pollard R, Salter I, sanders RJ et al (2009) Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457:577–581CrossRefGoogle Scholar
  69. Rico M, Santana-Casiano JM, González AG et al (2013) Variability of the phenolic profile in the diatom Phaeodactylum tricornutum growing under copper and iron stress. Limnol Oceanogr 51:144–152. CrossRefGoogle Scholar
  70. Rost B, Riebesell U, Sültemeyer D (2006) Carbon acquisition of marine phytoplankton: effect of photoperiod length. Limnol Oceanogr 51:12–20. CrossRefGoogle Scholar
  71. Roy EG, Wells ML (2011) Evidence for regulation of Fe(II) oxidation by organic complexing ligands in the Eastern Subarctic Pacific. Mar Chem 127:115–122. CrossRefGoogle Scholar
  72. Samperio-Ramos G, Santana-Casiano JM, González-Dávila M (2016) Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters. Biogeochemistry 128:19–34. CrossRefGoogle Scholar
  73. Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595. CrossRefGoogle Scholar
  74. Santana-Casiano JM, González-Dávila M, Fraile-Nuez E et al (2013) The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci Rep 3:5–12. CrossRefGoogle Scholar
  75. Santana-Casiano JM, González-Dávila M, González AG et al (2014) Characterization of phenolic exudates from Phaeodactylum tricornutum and their effects on the chemistry of Fe(II)-Fe(III). Mar Chem 158:10–16. CrossRefGoogle Scholar
  76. Schaum E, Rost B, Millar AJ, Collins S (2013) Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature Clim Change 3:298–302. CrossRefGoogle Scholar
  77. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. CrossRefGoogle Scholar
  78. Shaked Y, Lis H (2012) Disassembling iron availability to phytoplankton. Front Microbiol 3:1–26. CrossRefGoogle Scholar
  79. Shaked Y, Kustka AB, Morel FMM (2005) A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnol Oceanogr 50:872–882. CrossRefGoogle Scholar
  80. Sharp JH, Carlson CA, Peltzer ET et al (2002) Final dissolved organic carbon broad community intercalibration and preliminary use of DOC reference materials. Mar Chem 77:239–253. CrossRefGoogle Scholar
  81. Simpson FB, Neilands JB (1976) Siderochomes in cyanophyceae: isolation and characterization of schizokinen from Anabaena sp 1. J Phycol 12:44–48. Google Scholar
  82. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29:483–501. CrossRefGoogle Scholar
  83. Strzepek RF, Maldonado MT, Hunter KA et al (2011) Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol Oceanogr 56:1983–2002. CrossRefGoogle Scholar
  84. Stubbins A, Hubbard V, Uher G et al (2008) Relating carbon monoxide photoproduction to dissolved organic matter functionality. Environ Sci Technol 42:3271–3276. CrossRefGoogle Scholar
  85. Sunda WG (2012) Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front Microbiol 3:1–22. CrossRefGoogle Scholar
  86. Tagliabue A, Bowie AR, Boyd PW et al (2017) The integral role of iron in ocean biogeochemistry. Nature 543:51–59CrossRefGoogle Scholar
  87. Trick CG, Wilhelm SW (1995) Physiological changes in the coastal marine cyanobacterium Synechococcus sp. PCC 7002 exposed to low ferric ion levels. Mar Chem 50:207–217. CrossRefGoogle Scholar
  88. Uitz J, Claustre H, Gentili B, Stramski D (2010) Phytoplankton class-specific primary production in the world’s oceans: seasonal and interannual variability from satellite observations. Global Biogeochem Cycles 24:1–19. CrossRefGoogle Scholar
  89. Vasconcelos MTSD, Leal MFC (2008) Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum. Marine Environ Res 66:499–507. CrossRefGoogle Scholar
  90. Verweij W (2017) Computer program for calcultaling the Chemical Equilibria in AQuatic Systems (CHEAQS-Next). Version 2017.3Google Scholar
  91. Vidoudez C, Pohnert G (2008) Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J Plankton Res 30:1305–1313. CrossRefGoogle Scholar
  92. Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Ann Rev Marine Sci 1:43–63. CrossRefGoogle Scholar
  93. Wells ML, Trick CG, Cochlan WP et al (2005) Domoic acid: the synergy of iron, copper, and the toxicity of diatoms. Limnol Oceanogr 50(6):1908–1917CrossRefGoogle Scholar
  94. Wilhelm SW, Maxwell DP, Trick CG (1996) Growth, iron requirements, and siderophore production in iron-limited Synechococcus PCC 7002. Limnol Oceanogr 41:89–97. CrossRefGoogle Scholar
  95. Williams PJB, Quay PD, Westberry TK, Behrenfeld MJ (2013) The Oligotrophic Ocean is autotrophic. Ann Rev Marine Sci 5:535–549. CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Guillermo Samperio-Ramos
    • 1
  • J. Magdalena Santana-Casiano
    • 1
  • Melchor González-Dávila
    • 1
  1. 1.Instituto de Oceanografía y Cambio GlobalUniversidad de Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations