Journal of Oceanography

, Volume 73, Issue 6, pp 771–784 | Cite as

Remote effects of mixed layer development on ocean acidification in the subsurface layers of the North Pacific

  • Michio Watanabe
  • Michio Kawamiya
Original Article


Using the outputs of projections under the highest emission scenario of the representative concentration pathways performed by Earth system models (ESMs), we evaluate the ocean acidification rates of subsurface layers of the western North Pacific, where the strongest sink of atmospheric CO2 is found in the mid-latitudes. The low potential vorticity water mass called the North Pacific Subtropical Mode Water (STMW) shows large dissolved inorganic carbon (DIC) concentration increase, and is advected southwestward, so that, in the sea to the south of Japan, DIC concentration increases and ocean acidification occurs faster than in adjacent regions. In the STMW of the Izu-Ogasawara region, the ocean acidification occurs with a pH decrease of ~0.004 year−1 , a much higher rate than the previously estimated global average (0.0023 year−1), so that the pH decreases by 0.3–0.4 during the twenty-first century and the saturation state of calcite (ΩCa) decreases from ~4.8 down to ~2.4. We find that the ESMs with a deeper mixed layer in the Kuroshio Extension region show a larger increase in DIC concentration within the Izu-Ogasawara region and within the Ryukyu Islands region. Comparing model results with the mixed layer depth obtained from the Argo dataset, we estimate that DIC concentration at a depth of ~200 m increases by 1.4–1.6 μmol kg−1 year−1 in the Izu-Ogasawara region and by 1.1–1.4 μmol kg−1 year−1 in the Ryukyu Islands region toward the end of this century.


Ocean acidification Earth system model CMIP5 Subtropical mode water Dissolved inorganic carbon concentration 



The authors thank M. Fujii and H. Tatebe for helpful discussions and two anonymous reviewers for their invaluable comments and suggestions which have significantly improved this manuscript. This work is supported by SOSEI, the Program for Risk Information on Climate Change (of the Ministry of Education, Culture, Sports, Science and Technology, MEXT, Japan).


  1. Arora VK, Scirnocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:3–8. doi: 10.1029/2010GL046270 CrossRefGoogle Scholar
  2. Bates NR, Peters AJ (2007) The contribution of atmospheric acid deposition to ocean acidification in the subtropical North Atlantic Ocean. Mar Chem 107:547–558. doi: 10.1016/j.marchem.2007.08.002 CrossRefGoogle Scholar
  3. Broecker W, Clark E (2001) A dramatic Atlantic dissolution event at the onset of the last glaciation. Geochem Geophys Geosyst. doi: 10.1029/2001GC000185 Google Scholar
  4. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365. doi: 10.1038/425365a CrossRefGoogle Scholar
  5. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res. doi: 10.1029/2004JC002671 Google Scholar
  6. Cerrano C, Cardini U, Bianchelli S, Corinaldesi C, Pusceddu A, Danovaro R (2013) Red coral extinction risk enhanced by ocean acidification. Sci Rep 3:1–7. doi: 10.1038/srep01457 CrossRefGoogle Scholar
  7. Danabasoglu G, McWilliams JC (1995) Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J Clim 8:2967–2987CrossRefGoogle Scholar
  8. Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743CrossRefGoogle Scholar
  9. DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, ver. 2. ORNL/CDIAC-74. In: Dickson AG, Goyet C (eds) Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. US Department of Energy, Oak RidgeGoogle Scholar
  10. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  11. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA 106:12235–12240. doi: 10.1073/pnas.0906044106 CrossRefGoogle Scholar
  12. Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. doi: 10.1175/JCLI-D-11-00560.1 CrossRefGoogle Scholar
  13. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Baranova OK, Zweng MM, Reagan JR, Johnson DR (2014) World Ocean Atlas 2013. In: Levitus S, Mishonov A (eds) Dissolved inorganic nutrients (phosphate, nitrate, silicate), vol 4. NOAA Atlas NESDIS76, p 25Google Scholar
  14. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  15. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H-D, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597. doi: 10.1002/jame.20038 CrossRefGoogle Scholar
  16. Hallberg R (2003) The suitability of large-scale ocean models for adapting parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model. In: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, near-boundary processes and their parameterization. University of Hawaii at Manoa, Honolulu, pp 187–203Google Scholar
  17. Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J (eds) Ocean circulation and climate. Academic Press, New York, pp 373–386Google Scholar
  18. Hautala SL, Roemmich DH (1998) Subtropical mode water in the Northeast Pacific Basin. J Geophys Res 103:13055–13066CrossRefGoogle Scholar
  19. Hosoda S, Xie S-P, Takeuchi K, Nonaka M (2001) Eastern North Pacific Subtropical Mode Water in a general circulation model: formation mechanism and salinity effects. J Geophys Res 106:19671–19681CrossRefGoogle Scholar
  20. Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 8:47–59CrossRefGoogle Scholar
  21. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister J, Feely RA, Millero F, Mordy C, Peng T-H (2004) A global ocean carbon climatology: results from GLODAP. Global Biogeochem Cycles. doi: 10.1029/2004GB002247 Google Scholar
  22. Kubokawa A, Inui T (1999) Subtropical Countercurrent in an Idealized Ocean GCM. J Phys Oceanogr 29:1303–1313CrossRefGoogle Scholar
  23. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  24. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D (2013) World Ocean Atlas 2013. In: Levitus S, Mishonov A (eds) Temperature, vol 3. NOAA Atlas NESDIS 73, p 40Google Scholar
  25. Luan NT, Rahman MA, Maki T, Iwasaki N, Hasegawa H (2013) Growth characteristics and growth rate estimation of Japanese precious corals. J Exp Mar Biol Ecol 441:117–125. doi: 10.1016/j.jembe.2013.01.012 CrossRefGoogle Scholar
  26. Luo Y, Liu Q, Rothstein LM (2009) Simulated response of North Pacific Mode Waters to global warming. Geophys Res Lett 36:L23609. doi: 10.1029/2009GL040906 CrossRefGoogle Scholar
  27. Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:463–472Google Scholar
  28. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi: 10.4319/lo.1973.18.6.0897 CrossRefGoogle Scholar
  29. Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:781–799CrossRefGoogle Scholar
  30. Nakano H, Tsujino H, Hirabara M, Yasuda T, Motoi T, Ishii M, Yamanaka G (2011) Uptake mechanism of anthropogenic CO2 in the Kuroshio extension region in an ocean general circulation model. J Oceanogr 67:765–783. doi: 10.1007/s10872-011-0075-7 CrossRefGoogle Scholar
  31. Nishikawa S, Tsujino H, Sakamoto K, Nakano H (2010) Effects of mesoscale eddies on subduction and distribution of Subtropical Mode Water in an eddy-resolving OGCM of the western North Pacific. J Phys Oceanogr 40:1748–1765. doi: 10.1175/2010JPO4261.1 CrossRefGoogle Scholar
  32. Nishikawa S, Tsujino H, Sakamoto K, Nakano H (2013) Diagnosis of water mass transformation and formation rates in a high-resolution GCM of the North Pacific. J Geophys Res Oceans 118:1051–1069. doi: 10.1029/2012JC008116 CrossRefGoogle Scholar
  33. Oka E (2009) Seasonal and interannual variation of North Pacific Subtropical Mode Water in 2003–2006. J Oceanogr 65:151–164. doi: 10.1007/s10872-009-0015-y CrossRefGoogle Scholar
  34. Oka E, Qiu B, Takatani Y, Enyo K, Sasano D, Kosugi N, Ishii M, Nakano T, Suga T (2015) Decadal variability of subtropical mode water subduction and its impact on biogeochemistry. J Oceanogr 71:389–400. doi: 10.1007/s10872-015-0300-x CrossRefGoogle Scholar
  35. Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. J Phys Oceanogr 36:1365–1380. doi: 10.1175/JPO2918.1 CrossRefGoogle Scholar
  36. Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observations of the subtropical mode water evolution from the Kuroshio Extension System Study. J Phys Oceanogr 36:457–473. doi: 10.1175/JPO2849.1 CrossRefGoogle Scholar
  37. Resplandy L, Bopp L, Orr JC, Dunne JP (2013) Role of mode and intermediate waters in future ocean acidification: analysis of CMIP5 models. Geophys Res Lett 40:3091–3095. doi: 10.1002/grl.50414 CrossRefGoogle Scholar
  38. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi: 10.1126/science.1097403 CrossRefGoogle Scholar
  39. Santana-Casiano JM, González-Dávila M, Rueda M-J, Llinás O, González-Dávila E-F (2007) The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Global Biogeochem Cycles. doi: 10.1029/2006GB002788 Google Scholar
  40. Séférian R, Iudicone D, Bopp L, Roy T, Madec G (2012) Water mass analysis of effect of climate change on air–sea CO2 fluxes: the Southern Ocean. J Clim 25:3894–3908. doi: 10.1175/JCLI-D-11-00291.1 CrossRefGoogle Scholar
  41. Stommel H (1979) Determination of watermass properties of water pumped down from the Ekman layer to the geostrophic flow below. Proc Natl Acad Sci USA 76:3051–3055CrossRefGoogle Scholar
  42. Suga T, Hanawa K, Toba Y (1989) Subtropical mode water in the 137°E section. J Phys Oceanogr 19:1605–1608CrossRefGoogle Scholar
  43. Suga T, Hanawa K (1990) The mixed-layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation area of Subtropical Mode Water. J Mar Res 48:543–566CrossRefGoogle Scholar
  44. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DC, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C, Delille B, Bates NR, de Baar HJ (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res Part II Top Stud Oceanogr 56:554–577. doi: 10.1016/j.dsr2.2008.12.009 CrossRefGoogle Scholar
  45. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  46. Thompson L, Kelly KA, Darr D, Hallberg R (2003) Bouyancy and mixed-layer effects on the sea surface height response in an isopycnal model of the North Pacific. J Phys Oceanogr 32:3657–3670CrossRefGoogle Scholar
  47. van Heuven S, Pierrot D, Rae JWB, Lewis E, Wallace DWR (2011) MATLAB program developed for CO2 system calculations. In: ORNL/CDIAC (ed) Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. US Department of Energy, Oak RidgeGoogle Scholar
  48. Vichi M, Manzini E, Fogli PG, Alessandri A, Patara L, Scoccimarro E, Masina S, Navarra A (2011) Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario. Clim Dyn 37:1929–1947. doi: 10.1007/s00382-011-1079-0 CrossRefGoogle Scholar
  49. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev. 4:845–872. doi: 10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  50. Williams RG (1991) The role of the mixed layer in setting the potential vorticity of the main thermocline. J Phys Oceanogr 21:1803–1814CrossRefGoogle Scholar
  51. Xu L, Xie S-P, Liu Q (2012) Mode water ventilation and subtropical countercurrent over the North Pacific in CMIP5 simulations and future projections. J Geophys Res 117:C12009. doi: 10.1029/2012JC008377 Google Scholar
  52. Zhang H-M, Hogg NG (1992) Circulation and water mass balance in the Brazil basin. J Mar Res 50:385–420CrossRefGoogle Scholar
  53. Zweng MM, Reagan JR, Antonov JI, Locarnini RA, Mishonov AV, Boyer TP, Garcia HE, Baranova OK, Johnson DR, Seidov D, Biddle MM (2013) World Ocean Atlas 2013. In: Levitus S, Mishonov A (eds) Salinity, vol 2. NOAA Atlas NESDIS 74, p 39Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.Yokohama Institute for Earth SciencesJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations