Journal of Oceanography

, Volume 73, Issue 5, pp 687–699 | Cite as

Community patterns and temporal variation of picoeukaryotes in response to changes in the Yellow Sea Warm Current

  • Zhimeng Xu
  • Xue Song
  • Min WangEmail author
  • Qian Liu
  • Yong JiangEmail author
  • Hongbing Shao
  • Hongbin Liu
  • Kunpeng Shi
  • Yang Yu
Original Article


Picoeukaryotes are important members of the surface ocean microbial community with high diversity and significant temporal and spatial variations in community composition. Little is known about the picoeukaryotic biodiversity and community in the Yellow Sea, where hydrologic conditions are very different with the influence of the Yellow Sea Warm Current (YSWC). Using Illumina high throughput sequencing targeting 18S rDNA, we investigated the composition of picoeukaryotes at a permanent monitoring site in the central Yellow Sea from 2011 to 2013. Alveolata, Stramenopiles, and Archaeplastida were the main super groups found. Prasinophytes were dominant in N-YSWC (not influenced by the YSWC) samples whilst YSWC (influenced by the YSWC) samples were dominated by different groups, such as MALV-II (novel marine Alveolata), MAST-3, MAST-4 (novel marine Stramenopiles), and Dictyochophyceae. N-YSWC samples were grouped together in nMDS (non-metric multidimensional scaling) using the Bray–Curtis method. Distances between each two YSWC samples were greater. Based on indicator operational taxonomic unit (OTU) analysis (IOA), indicator species of the YSWC were represented by Pseudochattonella farcimen, Florenciella parvula within the class Dictyochophyceae, and Phaeocystis cordata within the class Prymnesiophyceae. The findings in our study suggest that picoeukaryotic communities in the central Yellow Sea differ temporally in response to changes in the YSWC.


Picoeukaryotic diversity and community Indicator species Temporal differences Yellow Sea 



This study was supported by the National Natural Foundation Science of China (NFSC) (Grants 31500339, 41676178, 41076088); Fundamental Research Funds for the Central University of Ocean University of China (Grant Numbers 201512013, 201564010 and 201512008). We are grateful to the captain and crews of the RV ‘Dong Fang Hong 2’. The authors would like to thank the editor and anonymous reviewers for their constructive comments.

Supplementary material

10872_2017_425_MOESM1_ESM.doc (31 kb)
Supplementary material 1 (DOC 31 kb)


  1. Acosta F, Ngugi DK, Stingl U (2013) Diversity of picoeukaryotes at an oligotrophic site off the Northeastern Red Sea Coast. Aquat Biosyst 9(1):16CrossRefGoogle Scholar
  2. Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3(2):441Google Scholar
  3. Amato KR, Yeoman CJ, Kent A et al (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7(7):1344–1353CrossRefGoogle Scholar
  4. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER Guide to software and statistical methods. PRIMER-E Ltd., PlypouthGoogle Scholar
  5. Caron DA, Countway PD (2009) Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat Microb Ecol 57:227–238CrossRefGoogle Scholar
  6. Chambouvet A, Morin P, Marie D, Guillou L (2008) Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322:1254–1256CrossRefGoogle Scholar
  7. Christaki U, Kormas KA, Genitsaris S et al (2014) Winter–summer succession of unicellular eukaryotes in a meso-eutrophic coastal system. Microb Ecol 67:13–23CrossRefGoogle Scholar
  8. Clarke KR, Gorley RH (2006) PRIMER-6 user manual/tutorial. PRIMER-E Ltd., PlymouthGoogle Scholar
  9. Countway PD, Gast RJ, Saval P et al (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the western North Atlantic. J Eukaryot Microbiol 52:95–106CrossRefGoogle Scholar
  10. Countway PD, Vigil PD, Schnetzer A, Moorthi SD, Carona DA (2010) Seasonal analysis of protistan community structure and diversity at the USC Microbial Observatory (San Pedro Channel, North Pacific Ocean). Limnol Oceanogr 55:2381–2396CrossRefGoogle Scholar
  11. Cui MC, Hu DX, Mo J (2004) Seasonality and causes of the Yellow Sea Warm Current. Chin J Oceanol Limnol 22:265–270CrossRefGoogle Scholar
  12. de Vargas C, Audic S, Henry N, Decelle J et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:29223618–29223625CrossRefGoogle Scholar
  13. Dittami SM, Riisberg I, John U (2012) Analysis of expressed sequence tags from the marine microalga Pseudochattonella farcimen (Dictyochophyceae). Protist 163:143–161CrossRefGoogle Scholar
  14. Dittami SM, Hostyeva V, Egge ES et al (2013) Seasonal dynamics of harmful algae in outer Oslofjorden monitored by microarray, qPCR, and microscopy. Environ Sci Pollut Res 20:6719–6732CrossRefGoogle Scholar
  15. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930CrossRefGoogle Scholar
  16. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  17. Duret MT, Pachiadaki MG, Stewart FJ et al (2015) Size-fractionated diversity of eukaryotic microbial communities in the Eastern Tropical North Pacific oxygen minimum zone. FEMS Microbiol Ecol 91:1–42CrossRefGoogle Scholar
  18. Edgcomb V, Orsi W, Bunge J et al (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME J 5:1344–1356CrossRefGoogle Scholar
  19. Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I et al (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom-forming ichthyotoxic flagellate from the Skagerrak. Nor J Phycol 43:1054–1070CrossRefGoogle Scholar
  20. Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884CrossRefGoogle Scholar
  21. Egge ES, Johannessen TV, Andersen T et al (2015) Seasonal diversity and dynamics of haptophytes in the Skagerrak, Norway, explored by high-throughput sequencing. Mol Ecol 24:3026–3042CrossRefGoogle Scholar
  22. Etkrem W, Romari K, Latasa M et al (2004) Florenciella parvula gen. et sp. nov. (Dictyochophyceae, Heterokontophyta), a small flagellate isolated from the English Channel. Phycologia 43:658–668CrossRefGoogle Scholar
  23. Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365CrossRefGoogle Scholar
  24. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:441–453CrossRefGoogle Scholar
  25. Hu HG, Wan ZW, Yuan YI (2004) Simulation of seasonal variation of phytoplankton in the southern Huanghai (Yellow) Sea and analysis on its influential factors. Acta Oceanol Sin 26:74–88Google Scholar
  26. Hugerth LW, Muller EE, Hu YO et al (2014) Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS One 9:e95567CrossRefGoogle Scholar
  27. Kilias ES, Nothig E, Wolf C, Metfies K (2014) Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean. J Eukaryot Microbiol 61(6):569–579CrossRefGoogle Scholar
  28. Kulk G, van de Poll W, Buma AG (2012) Temperature-dependent growth and photophysiology of prokaryotic and eukaryotic oceanic picophytoplankton. Mar Ecol Prog Ser 466:43–55CrossRefGoogle Scholar
  29. Lanier W, Moustafa A, Bhattacharya D, Comeron JM (2008) EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One 3:e2171CrossRefGoogle Scholar
  30. Li WKW (1994) Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol Oceanogr 39:169–175CrossRefGoogle Scholar
  31. Lin C, Ning XR, Su JL, Lin Y, Xu B (2005) Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. J Marine Syst 55:223–234CrossRefGoogle Scholar
  32. Liu X, Huang BQ, Huang Q, Wang L (2015) Seasonal phytoplankton response to physical processes in the southern Yellow Sea. J Sea Res 95:45–55CrossRefGoogle Scholar
  33. Logares R, Audic R, Santini S (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6:1823–1833CrossRefGoogle Scholar
  34. Logares R, Audic S, Bass D et al (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:1–9CrossRefGoogle Scholar
  35. Lovejoy C, Vincent WF, Bonilla S et al (2007) Distribution, phylogeny and growth of cold-adapted picoprasinophytes in arctic seas. J Phycol 43:78–89CrossRefGoogle Scholar
  36. Lü LG, Wang X, Wang H et al (2013) The variations of zooplankton biomass and their migration associated with the Yellow Sea Warm Current. Cont Shelf Res 64:10–19CrossRefGoogle Scholar
  37. Lόpez-Garcίa P, Rodríguez-Valera F, Pedrós C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607CrossRefGoogle Scholar
  38. Mangot JF, Domaizon I, Taib N et al (2013) Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol 15:1745CrossRefGoogle Scholar
  39. Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65:91–110CrossRefGoogle Scholar
  40. Massana R, Castresana J, Balagué V et al (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microb 70:3528–3534CrossRefGoogle Scholar
  41. Medlin LK, Metfies K, Mehl H, Wiltshire K, Valentin K (2006) Picoeukaryotic plankton diversity at the Helgoland time series site as assessed by three molecular methods. Microb Ecol 52:53–71CrossRefGoogle Scholar
  42. Melinda PS, Sebastian S, Adam M et al (2016) Abundance and biogeography of picoprasinophyte ecotypes and other phytoplankton in the Eastern North Pacific Ocean. Appl Environ Microbiol 82(6):1693–1705CrossRefGoogle Scholar
  43. Merriam DF (1978) Computational methods of multivariate analysis in physical geography. Earth Sci Rev 14(2):173–174CrossRefGoogle Scholar
  44. Moon-van der Staay SY, de Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610CrossRefGoogle Scholar
  45. Moreau H, Verhelst B, Couloux A et al (2012) Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol 13:R74CrossRefGoogle Scholar
  46. Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microb 70:4064–4072CrossRefGoogle Scholar
  47. Not F, Latasa M, Scharek R et al (2008) Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep Sea Res Pt I 55:1456–1473CrossRefGoogle Scholar
  48. O’Kelly CJ, Sieracki ME, Thier EC, Hobson IC (2003) A transient bloom of Ostreococcus (Chlorophyta, Prasinophyceae) in West Neck Bay, Long Island, New York. J Phycol 39:850–854CrossRefGoogle Scholar
  49. Palenik B, Grimwoodc J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710CrossRefGoogle Scholar
  50. Park MG, Yih W, Coats DW (2004) Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol 51:145–155CrossRefGoogle Scholar
  51. Pierce RW, Turner JT (2009) Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181Google Scholar
  52. Pomeroy LR, Williams PJI, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33CrossRefGoogle Scholar
  53. Potvin M, Lovejoy C (2009) PCR-Based diversity estimates of artificial and environmental 18S rRNA gene libraries. J Eukaryot Microbiol 56(2):174–181CrossRefGoogle Scholar
  54. Rocke E, Jing H, Liu H (2013) Phylogenetic composition and distribution of picoeukaryotes in the hypoxic northwestern coast of the Gulf of Mexico. MicrobiolOpen 2:130–143CrossRefGoogle Scholar
  55. Rodríguez-Martínez R, Rocap G, Logares R, Romac S, Massana R (2012) Low evolutionary diversification in a widespread and abundant uncultured protist (MAST-4). Mol Biol Evol 29:1393–1406CrossRefGoogle Scholar
  56. Rodríguez-Martínez R, Rocap G, Salarza G, Massana R (2013) Biogeography of the uncultured marine picoeukaryote MAST-4: temperature-driven distribution patterns. ISME J 7:1531–1541CrossRefGoogle Scholar
  57. Shi XL, Lepère C, Scanlan DJ, Vaulot D (2011) Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean. PLoS One 6(4):e18979CrossRefGoogle Scholar
  58. Skjelbred B, Edvardsen B, Andersen T (2013) Environmental optima for seven strains of Pseudochattonella (Dictyochophyceae, Heterokonta). J Phycol 49:54–60CrossRefGoogle Scholar
  59. Song DX, Bao XW, Wang XH et al (2009) The inter-annual variability of the Yellow Sea Warm Current surface axis and its influencing factors. Chinese J Oceanol Limnol 27(3):607–613CrossRefGoogle Scholar
  60. Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small sub-unit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663CrossRefGoogle Scholar
  61. Stoecker DK (1999) Mixotrophy among Dinoflagellates. J Eukaryn Microbiol 46:397–401CrossRefGoogle Scholar
  62. Tang QS, Su JL, Zhang J (2013) Spring blooms and the ecosystem processes: the case study of the Yellow Sea. Deep Sea Res Pt II 97:1–3CrossRefGoogle Scholar
  63. Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiol Rev 32:795–820CrossRefGoogle Scholar
  64. Worden A (2006) Picoeukaryote diversity in coastal waters of the Pacific Ocean. Aquat Microb Ecol 43:165–175CrossRefGoogle Scholar
  65. Worden AZ, Nolan JK, Palenik B (2004) Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr 49:168–179CrossRefGoogle Scholar
  66. Worden AZ, Lee JH, Mock T et al (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 423:268–272CrossRefGoogle Scholar
  67. Wu W, Huang B, Liao Y, Sun P (2014) Picoeukaryotic diversity and distribution in the subtropical-tropical South China Sea. FEMS Microbiol Ecol 89:563–579CrossRefGoogle Scholar
  68. Zhu F, Massana R, Not F et al (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92CrossRefGoogle Scholar
  69. Zingone A, Chrétiennot-Dinet MJ, Lange M, Medlin L (1999) Morphological and genetic characterization of Phaeocystis Cordata and P. Jahnii (Prymnesiophyceae), two new species from the Mediterrranean Sea. J Phycol 35:1322–1337CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Zhimeng Xu
    • 1
  • Xue Song
    • 1
  • Min Wang
    • 1
    • 4
    Email author
  • Qian Liu
    • 1
  • Yong Jiang
    • 1
    Email author
  • Hongbing Shao
    • 1
  • Hongbin Liu
    • 2
  • Kunpeng Shi
    • 1
  • Yang Yu
    • 3
  1. 1.College of Marine Life ScienceOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Division of EnvironmentHong Kong University of Science and TechnologyHong KongPeople’s Republic of China
  3. 3.College of Environmental Science and EngineeringOcean University of ChinaQingdaoPeople’s Republic of China
  4. 4.Institute of Evolution and Marine BiodiversityOcean University of ChinaQingdaoPeople’s Republic of China

Personalised recommendations