Journal of Oceanography

, Volume 73, Issue 5, pp 669–685 | Cite as

Distribution and stoichiometry of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater around the Juan de Fuca Ridge

  • Linjie ZhengEmail author
  • Tomoharu Minami
  • Shotaro Takano
  • Hideki Minami
  • Yoshiki Sohrin
Original Article


A central theme of the ongoing GEOTRACES program is to improve the understanding of processes occurring at ocean interfaces with continents, sediments, and ocean crust. In this context, we studied the distributions of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb around the Juan de Fuca Ridge (JdFR) in total dissolvable (td), dissolved (d), and labile particulate (lp) fractions, which represent a fraction in unfiltered samples, filtered samples through an AcroPak capsule filter, and the difference between td and d, respectively. Al and Fe were dominated by lp-species, while Ni, Zn, and Cd were dominated by d-species with undetectable amounts of lp-species. Major findings in this study are as follows: (1) The continental margin (CM) provided large sources of Al, Mn, Fe, and Co from the surface to ~2000 m in depth. The supply from CM caused high surface concentrations of dMn and dCo, a subsurface (100–300 m depth) maximum of dCo, and intermediate (500–2000 m depth) maxima of lpAl and lpFe. The supply of dFe from CM was ~10 times that from the high-temperature hydrothermal activity at station BD21, which is located at ~3 km from the Middle Valley venting site and ~ 200 km from Vancouver Island. (2) DPb was maximum at the top layer of North Pacific Intermediate Water, probably owing to isopycnal transport of anthropogenic Pb via advection of subducted surface waters. Although dCo and dPb had different sources in the upper water, they showed a strong linearity below 300 m (r 2 = 0.95, n = 38), indicating concurrent scavenging. (3) A high-temperature hydrothermal plume occurred at a depth of 2300 m at BD21, accounting for maxima of dAl, dMn, dFe, lpCu, and lpPb and a minimum of dCu. (4) Strong bottom maxima of lpAl, lpMn, lpFe, lpCo, and lpPb occurred above the abyssal plain at the western foot of the JdFR, indicating resuspension of sediments. However, bottom maxima of d-species were apparent only for dAl and dCu.


GEOTRACES North Pacific Ocean The Juan de Fuca Ridge Trace metals Total dissolvable species Dissolved species Labile particulate species Continental margin Hydrothermal activities Resuspension 



Juan de Fuca Ridge


Total dissolvable




Labile particulate


North Pacific Intermediate Water


Pacific Deep Water


Continental margin



We thank the crew, officers, captain, and scientists onboard R/V Hakuho Maru during the KH-12-4 cruise for their help with sampling and routine analysis. We also thank the three reviewers and editor Prof. Nishioka for their critical and insightful comments that helped to improve this manuscript. This work was financed through grants from the Steel Industry Foundation for the Advancement of Environmental Protection Technology and from Grant-in-Aid of Scientific Research, the Ministry of Education, Culture, Sports, Science, and Technology of Japan.


  1. Ames DE, Franklin JM, Hannington MD (1993) Mineralogy and geochemistry of active and inactive chimneys and massive sulfide, Middle Valley, northern Juan de Fuca Ridge; an evolving hydrothermal system. Can Mineral 31(4):997–1024Google Scholar
  2. Baker ET, Massoth GJ, Feely RA (1987) Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329(6135):149–151. doi: 10.1038/329149a0 CrossRefGoogle Scholar
  3. Baker ET, Lavelle JW, Feely RA, Massoth GJ, Walker SL, Lupton JE (1989) Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. J Geophys Res 94(B7):9237–9250. doi: 10.1029/JB094iB07p09237 CrossRefGoogle Scholar
  4. Beaulieu SE, Baker ET, German CR, Maffei A (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem Geophys Geosyst 14(11):4892–4905. doi: 10.1002/2013GC004998 CrossRefGoogle Scholar
  5. Biller DV, Bruland KW (2013) Sources and distributions of Mn, Fe Co, Ni, Cu, Zn, and Cd relative to macronutrients along the central California coast during the spring and summer upwelling season. Mar Chem 155:50–70. doi: 10.1016/j.marchem.2013.06.003 CrossRefGoogle Scholar
  6. Bostock HC, Opdyke BN, Williams MJM (2010) Characterising the intermediate depth waters of the Pacific Ocean using & δ 13and other geochemical tracers. Deep-Sea Res I 57(7):847–859. doi: 10.1016/j.dsr.2010.04.005 CrossRefGoogle Scholar
  7. Boyle EA, Sclater FR, Edmond JM (1977) The distribution of dissolved copper in the Pacific. Earth Planet Sci Lett 37(1):38–54. doi: 10.1016/0012-821X(77)90144-3 CrossRefGoogle Scholar
  8. Brown MT, Lippiatt SM, Bruland KW (2010) Dissolved aluminum, particulate aluminum, and silicic acid in northern Gulf of Alaska coastal waters: glacial/riverine inputs and extreme reactivity. Mar Chem 122(1–4):160–175. doi: 10.1016/j.marchem.2010.04.002 CrossRefGoogle Scholar
  9. Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47(2):176–198. doi: 10.1016/0012-821x(80)90035-7 CrossRefGoogle Scholar
  10. Bruland KW, Knauer GA, Martin JH (1978) Cadmium in northeast Pacific waters 1. Limnol Oceanogr 23(4):618–625. doi: 10.4319/lo.1978.23.4.0618 CrossRefGoogle Scholar
  11. Burton JD, Statham PJ, Elderfield H (1988) Trace Metals as Tracers in the Ocean [and Discussion]. Philos Trans R Soc Lond A 325(1583):127–145CrossRefGoogle Scholar
  12. Butterfield DA, McDuff RE, Franklin J, Wheat CG (1994) Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge1. Proc Ocean Drill Progr Sci Results 139:395–410Google Scholar
  13. Cameron V, Vance D (2014) Heavy nickel isotope compositions in rivers and the oceans. Geochim Cosmochim Acta 128:195–211. doi: 10.1016/j.gca.2013.12.007 CrossRefGoogle Scholar
  14. Chase Z, Johnson KS, Elrod VA, Plant JN, Fitzwater SE, Pickell L, Sakamoto CM (2005) Manganese and iron distributions off central California influenced by upwelling and shelf width. Mar Chem 95(3–4):235–254. doi: 10.1016/j.marchem.2004.09.006 CrossRefGoogle Scholar
  15. Cid AP, Urushihara S, Minami T, Norisuye K, Sohrin Y (2011) Stoichiometry among bioactive trace metals in seawater on the Bering Sea shelf. J Oceanogr 67(6):747–764. doi: 10.1007/s10872-011-0070-z CrossRefGoogle Scholar
  16. Cid AP, Nakatsuka S, Sohrin Y (2012) Stoichiometry among bioactive trace metals in the Chukchi and Beaufort Seas. J Oceanogr 68(6):985–1001. doi: 10.1007/s10872-012-0150-8 CrossRefGoogle Scholar
  17. Conway TM, John SG (2015) The cycling of iron, zinc and cadmium in the North East Pacific Ocean—insights from stable isotopes. Geochim Cosmochim Acta 164:262–283. doi: 10.1016/j.gca.2015.05.023 CrossRefGoogle Scholar
  18. Davis EE, Goodfellow WD, Bornhold BD, Adshead J, Blaise B, Villinger H, Le Cheminant GM (1987) Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth Planet Sci Lett 82(1–2):49–61. doi: 10.1016/0012-821X(87)90106-3 CrossRefGoogle Scholar
  19. Ezoe M, Ishita T, Kinugasa M, Lai X, Norisuye K, Sohrin Y (2004) Distributions of dissolved and acid-dissolvable bioactive trace metals in the North Pacific. Geochem J 38(6):535–550CrossRefGoogle Scholar
  20. Feely RA, Massoth GJ, Baker ET, Cowen JP, Lamb MF, Krogslund KA (1990) The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet Sci Lett 96(3–4):305–318. doi: 10.1016/0012-821X(90)90009-M CrossRefGoogle Scholar
  21. Feely RA, Massoth GJ, Baker ET, Lebon GT, Geiselman TL (1992) Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions. J Geophys Res 97(B3):3457–3468. doi: 10.1029/91JB03062 CrossRefGoogle Scholar
  22. Fujishima Y, Ueda K, Maruo M, Nakayama E, Tokutome C, Hasegawa H, Matsui M, Sohrin Y (2001) Distribution of trace bioelements in the subarctic North Pacific Ocean and the Bering Sea (the R/V Hakuho Maru Cruise KH-97-2). J Oceanogr 57(3):261–273. doi: 10.1023/A:1012426411228 CrossRefGoogle Scholar
  23. German CR, Campbell AC, Edmond JM (1991) Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes. Earth Planet Sci Lett 107(1):101–114. doi: 10.1016/0012-821x(91)90047-l CrossRefGoogle Scholar
  24. Han Q, Moore JK, Zender C, Measures C, Hydes D (2008) Constraining oceanic dust deposition using surface ocean dissolved Al. Global Biogeochem Cy. doi: 10.1029/2007gb002975 Google Scholar
  25. Huyer A (1983) Coastal upwelling in the California current system. Progr Oceanogr 12(3):259–284. doi: 10.1016/0079-6611(83)90010-1 CrossRefGoogle Scholar
  26. Hwang J, Druffel ERM, Eglinton TI (2010) Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles. Global Biogeochem Cy. doi: 10.1029/2010GB003802 Google Scholar
  27. Janssen DJ, Cullen JT (2015) Decoupling of zinc and silicic acid in the subarctic northeast Pacific interior. Mar ChemPart 177(1):124–133. doi: 10.1016/j.marchem.2015.03.014 CrossRefGoogle Scholar
  28. Janssen DJ, Conway TM, John SG, Christian JR, Kramer DI, Pedersen TF, Cullen JT (2014) Undocumented water column sink for cadmium in open ocean oxygen-deficient zones. Proc Natl Acad Sci 111(19):6888–6893. doi: 10.1073/pnas.1402388111 CrossRefGoogle Scholar
  29. Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57(3):137–161. doi: 10.1016/S0304-4203(97)00043-1 CrossRefGoogle Scholar
  30. Lam PJ, Bishop JKB (2008) The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys Res Lett 35(7):L07608. doi: 10.1029/2008gl033294 CrossRefGoogle Scholar
  31. Landing WM, Bruland KW (1987) The contrasting biogeochemistry of iron and manganese in the Pacific Ocean. Geochim Cosmochim Acta 51(1):29–43. doi: 10.1016/0016-7037(87)90004-4 CrossRefGoogle Scholar
  32. Lee J-M, Boyle EA, Echegoyen-Sanz Y, Fitzsimmons JN, Zhang R, Kayser RA (2011) Analysis of trace metals (Cu, Cd, Pb, and Fe) in seawater using single batch nitrilotriacetate resin extraction and isotope dilution inductively coupled plasma mass spectrometry. Anal Chim Acta 686(1–2):93–101CrossRefGoogle Scholar
  33. Lippiatt SM, Lohan MC, Bruland KW (2010) The distribution of reactive iron in northern Gulf of Alaska coastal waters. Mar Chem 121(1–4):187–199. doi: 10.1016/j.marchem.2010.04.007 CrossRefGoogle Scholar
  34. Lohan MC, Statham PJ, Crawford DW (2002) Total dissolved zinc in the upper water column of the subarctic North East Pacific. Deep-Sea Res II 49(24–25):5793–5808. doi: 10.1016/S0967-0645(02)00215-1 CrossRefGoogle Scholar
  35. Martin JH, Michael Gordon R (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-Sea Res A 35(2):177–196. doi: 10.1016/0198-0149(88)90035-0 CrossRefGoogle Scholar
  36. Martin JH, Knauer GA, Broenkow WW (1985) VERTEX: the lateral transport of manganese in the northeast Pacific. Deep-Sea Res A 32(11):1405–1427. doi: 10.1016/0198-0149(85)90056-1 CrossRefGoogle Scholar
  37. Martin JH, Gordon RM, Fitzwater S, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res A 36(5):649–680. doi: 10.1016/0198-0149(89)90144-1 CrossRefGoogle Scholar
  38. Minami T, Konagaya W, Zheng L, Takano S, Sasaki M, Murata R, Nakaguchi Y, Sohrin Y (2015) An off-line automated preconcentration system with ethylenediaminetriacetate chelating resin for the determination of trace metals in seawater by high-resolution inductively coupled plasma mass spectrometry. Anal Chim Acta 854:183–190. doi: 10.1016/j.aca.2014.11.016 CrossRefGoogle Scholar
  39. Miura T, Suga T, Hanawa K (2002) Winter Mixed Layer and Formation of dichothermal water in the Bering Sea. J Oceanogr 58(6):815–823. doi: 10.1023/A:1022871112946 CrossRefGoogle Scholar
  40. Miura T, Suga T, Hanawa K (2003) Numerical study of formation of dichothermal water in the Bering Sea. J Oceanogr 59(3):369–376. doi: 10.1023/A:1025524228857 CrossRefGoogle Scholar
  41. Moffett JW, Ho J (1996) Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochim Cosmochim Acta 60(18):3415–3424CrossRefGoogle Scholar
  42. Moran SB, Moore RM (1991) The potential source of dissolved aluminum from resuspended sediments to the North Atlantic Deep Water. Geochim Cosmochim Acta 55(10):2745–2751. doi: 10.1016/0016-7037(91)90441-7 CrossRefGoogle Scholar
  43. Nishioka J, Nakatsuka T, Watanabe YW, Yasuda I, Kuma K, Ogawa H, Ebuchi N, Scherbinin A, Volkov YN, Shiraiwa T, Wakatsuchi M (2013) Intensive mixing along an island chain controls oceanic biogeochemical cycles. Global Biogeochem Cy 27(3):920–929. doi: 10.1002/gbc.20088 CrossRefGoogle Scholar
  44. Noble AE, Saito MA, Maiti K, Benitez-Nelson CR (2008) Cobalt, manganese, and iron near the Hawaiian Islands: a potential concentrating mechanism for cobalt within a cyclonic eddy and implications for the hybrid-type trace metals. Deep-Sea Res II 55(10–13):1473–1490. doi: 10.1016/j.dsr2.2008.02.010 CrossRefGoogle Scholar
  45. Noriki S, Nakanishi K, Fukawa T, Uematsu M, Uchida T, Tsunogai S (1980) Use of a sealed Teflon vessel for the decomposition followed by the determination of chemical constituents of various marine samples. Bulletin of the Faculty of Fisheries-Hokkaido University, 31:345–361. Google Scholar
  46. Nozaki Y, Thomson J, Turekian KK (1976) The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth Planet Sci Lett 32(2):304–312. doi: 10.1016/0012-821X(76)90070-4 CrossRefGoogle Scholar
  47. Okubo A, Takeda S, Obata H (2013) Atmospheric deposition of trace metals to the western North Pacific Ocean observed at coastal station in Japan. Atmos Res 129–130:20–32. doi: 10.1016/j.atmosres.2013.03.014 CrossRefGoogle Scholar
  48. Orians KJ, Bruland KW (1986) The biogeochemistry of aluminum in the Pacific Ocean. Earth Planet Sci Lett 78(4):397–410. doi: 10.1016/0012-821X(86)90006-3 CrossRefGoogle Scholar
  49. Reid JL (1997) On the total geostrophic circulation of the pacific ocean: flow patterns, tracers, and transports. Progr Oceanogr 39(4):263–352. doi: 10.1016/S0079-6611(97)00012-8 CrossRefGoogle Scholar
  50. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The Crust. Treatise on Geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64Google Scholar
  51. Schaule BK, Patterson CC (1981) Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth Planet Sci Lett 54(1):97–116. doi: 10.1016/0012-821X(81)90072-8 CrossRefGoogle Scholar
  52. Schlitzer R (2015) Ocean Data View. odvawideGoogle Scholar
  53. SCOR Working Group (2007) GEOTRACES—an international study of the global marine biogeochemical cycles of trace elements and their isotopes. Chem Erde Geochem 67(2):85–131. doi: 10.1016/j.chemer.2007.02.001 CrossRefGoogle Scholar
  54. Sohrin Y, Bruland KW (2011) Global status of trace elements in the ocean. Trends Anal Chem 30(8):1291–1307. doi: 10.1016/j.trac.2011.03.006 CrossRefGoogle Scholar
  55. Sohrin Y, Urushihara S, Nakatsuka S, Kono T, Higo E, Minami T, Norisuye K, Umetani S (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Anal Chem 80(16):6267–6273. doi: 10.1021/ac800500f CrossRefGoogle Scholar
  56. Suga T, Aoki Y, Saito H, Hanawa K (2008) Ventilation of the North Pacific subtropical pycnocline and mode water formation. Progr Oceanogr 77(4):285–297. doi: 10.1016/j.pocean.2006.12.005 CrossRefGoogle Scholar
  57. Sunda WG (1989) Trace metal interactions with marine phytoplankton. Biol Oceanogr 6(5–6):411–442. doi: 10.1080/01965581.1988.10749543 Google Scholar
  58. Sunda WG (1994) Trace metal/phytoplankton interactions in the sea. In: Bidoglio G, Stumm W (eds) Chemistry of aquatic systems: local and global perspectives. Kluwer, Dordrecht, pp 213–247CrossRefGoogle Scholar
  59. Tagliabue A, Aumont O, Bopp L (2014) The impact of different external sources of iron on the global carbon cycle. Geophys Res Lett 41(3):920–926. doi: 10.1002/2013GL059059 CrossRefGoogle Scholar
  60. Talley LD (1993) Distribution and formation of North Pacific intermediate water. J Phys Oceanogr 23(3):517–537CrossRefGoogle Scholar
  61. Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction, 6th edn. Elsevier, AmsterdamGoogle Scholar
  62. van Hulten MMP, Sterl A, Middag R, de Baar HJW, Gehlen M, Dutay JC, Tagliabue A (2014) On the effects of circulation, sediment resuspension and biological incorporation by diatoms in an ocean model of aluminium. Biogeosciences 11(14):3757–3779. doi: 10.5194/bg-11-3757-2014 CrossRefGoogle Scholar
  63. Vu HTD, Sohrin Y (2013) Diverse stoichiometry of dissolved trace metals in the Indian Ocean. Sci Rep 3:1745. doi: 10.1038/srep01745 CrossRefGoogle Scholar
  64. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39(8):1985–1992CrossRefGoogle Scholar
  65. Wu J, Rember R, Jin M, Boyle EA, Flegal AR (2010) Isotopic evidence for the source of lead in the North Pacific abyssal water. Geochim Cosmochim Acta 74(16):4629–4638. doi: 10.1016/j.gca.2010.05.017 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  1. 1.Institute for Chemical ResearchKyoto UniversityUjiJapan
  2. 2.School of Biological SciencesTokai UniversitySapporoJapan

Personalised recommendations