Journal of Oceanography

, Volume 73, Issue 4, pp 403–426 | Cite as

Fifteen years progress of the TRITON array in the Western Pacific and Eastern Indian Oceans

  • Kentaro Ando
  • Yoshifumi Kuroda
  • Yosuke Fujii
  • Tatsuya Fukuda
  • Takuya Hasegawa
  • Takanori Horii
  • Yasuhisa Ishihara
  • Yuji Kashino
  • Yukio Masumoto
  • Keisuke Mizuno
  • Motoki Nagura
  • Iwao Ueki


The Triangle Trans‐Ocean Buoy Network (TRITON) project by the Japan Agency for Marine-Earth Science and Technology began with deployment in the western tropical Pacific Ocean in 1998 and has shifted to steady, long-term observations since 1999. After on-site inter-comparison with the Autonomous Temperature Line Acquisition System mooring system of the Tropical Atmosphere and Ocean (TAO) array by the National Oceanic and Atmospheric Administration, the TRITON array became the international TAO/TRITON array in 2000 as a key component of the Global Ocean and Climate Observing Systems. The TAO/TRITON array took over from the TAO array, which was developed during the Tropical Ocean and Global Atmosphere program (1985–1994), and replaced the western part of TAO with new additional real-time measurements of salinity and ocean currents. In 2001, two TRITON moorings were deployed in the eastern Indian Ocean for capturing the eastern pole of the Indian Ocean Dipole. From this initiative, the Indian Ocean Observing System (IndOOS) was designed, and the Indian Ocean mooring array (Research Moored Array for Africa–Asian–Australian Monsoon Analysis and Prediction) was developed as a key component of IndOOS. In this paper, 15 years of progress in the TRITON project in the western Pacific and eastern Indian Oceans is reviewed with regards to scientific outcomes, technological development, and collaborations with international and domestic partners. Future directions for sustainable observation in the Pacific and Indian Oceans are also discussed.


TRITON array TAO array Pacific Ocean Indian Ocean Ocean observations Mooring system El Nino IOD Intraseasonal Seasonal Interannaual 



Anomaly correlation coefficient


Acoustic doppler current profiler


Autonomous temperature line acquisition system


Barrier layer


Climate variability and predictability (currently, climate and ocean variability, predictability, and change)


European Center for Medium-Range Weather Forecasts


El Niño-Southern oscillation


Global Climate Observing System


Global Ocean Data Assimilation Experiment (GODAE Ocean View)


Global Ocean Observing System


GODAE Ocean View Observing System Evaluation Task Team


Global Tropical Moored Buoy Array


Halmahera Eddy


Integrated meteorology buoy


Indian Ocean Observing System


Indian Ocean Dipole


Indian Ocean Panel


Inter-tropical convergence zone


Japan Agency for Marine-Earth Science and Technology


Japan Meteorological Agency


Mindanao dome


Mutsu Institute of Oceanography


Mirai Indian Ocean cruise for the Study of the MJO-convection Onset


Madden-Julian Oscillation


Mixed layer temperature


Meteorological Research Institute


Mini size TRITON


North Equatorial Counter Current


New Guinea Coastal Current


New Guinea Coastal Under Current


National Oceanic and Atmospheric Administration


North Pacific Gyre Oscillation


Ocean heat content


Ocean observations panel for climate


Observing system experiment


Pacific decadal oscillation


Prediction and Research Moored Array in the Atlantic


Pacific Marine Environmental Laboratory




Research Moored Array for African–Asian–Australian Monsoon Analysis and prediction


South Pacific Convergence Zone


Sea Surface Temperature


Tropical Atmosphere and Ocean


Tropical Ocean and Global Atmosphere


Tropical Pacific Observing System


Triangle Trans-Ocean Buoy Network


World Climate Research Program


Westerly wind burst


Warm water volume



The TRITON Project has been fully supported by Ministry of Education, Culture, Science and Technology of Japanese Government. Many of the administrations, engineers, technicians, and ship operators in JAMSTEC have given billions of efforts to operate the buoy systems. We owe many ocean and atmosphere scientists in Japan for their enthusiastic support through the planning stage, collaborative studies, and reviewing meetings. The international partners in United States of America (NOAA/PMEL), Republic of Indonesia (Agency for the Assessment and Application of Technology), Republic of Korea (Korean Institute of Ocean Science and Technology), People’s Republic of China (Institute of Oceanography, First Institute of Oceanography), Republic of India (National Institute of Oceanography) support us in many daunting tasks to conduct and sustain observations. CLIVAR, OOPC, GOOS/GCOS, TIP (Tropical Moored Buoy Implementation Panel), IRF (IndOOS Resource Forum), and GODAE have provided many precious opportunities to coordinate observational activities and studies with relevant scientists and engineers. Data assimilation studies were conducted by the collaborative study between JAMSTEC and MRI.


  1. Ando K, Hasegawa T (2009) Annual zonal displacement of Pacific warm pool in association with El Nino onset. Sci Online Lett Atmos 5:149–152. doi: 10.2151/sola.2009-038 Google Scholar
  2. Ando K, McPhaden M (1997) Variability of surface layer hydrography in the tropical Pacific Ocean. J Geophys Res 102:23063–23078CrossRefGoogle Scholar
  3. Ando K, Nagahama T, Matsumoto T, Kuroda Y, Kawahara M (2002) Error estimation of TRITON buoy meteorological sensors. In: Kuroda Y (ed) TRITON: Present Status and Future Plan (TOCS No.5 report) Part A Technical reports and scientific papers. TRITON Office, Yokosuka, pp 49–53Google Scholar
  4. Ando K, Matsumoto T, Nagahama T, Ueki I, Takatsuki Y, Kuroda Y (2005) Drift characteristics of a moored conductivity-temperature sensor and correction of salinity data. J Atmos Oceanic Tech 22:282–291CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng HY, Yamagata T (2007) El Nino Modoki and its possible teleconnection. J Geophys Res. doi: 10.1029/2006JC003798 Google Scholar
  6. Balmaseda MA, Anderson DLT (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophy Res Lett 36:L01701. doi: 10.1029/2008GL035561 CrossRefGoogle Scholar
  7. Balmaseda MA, Fujii Y, Alves O, Lee T, Rienecker M, Rosati T, Stammer D, Xue Y, Freeland H, McPhaden MJ, Goddard L, Coelho C (2010) Role of the ocean observing system in an end-to-end seasonal forecasting system. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 1). ESA Publication WPP-306, Venice, pp 299–315. doi: 10.5270/OceanObs09.pp.03
  8. Balmaseda MA, Kumar A, Andersson E, Takaya Y, Anderson D, Janssen P, Martin M, Fujii Y (2014) White Paper #4—Operational forecasting systems. Report of the Tropical Pacific Observing System 2020 Workshop (TPOS2020). Volume II—White Papers. GCOS Rep. 184/GOOS Rep. 206/WCRP Rep. 6/2014, pp 64–101Google Scholar
  9. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  10. Bourles B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu LS, Planton S, Busalacchi A, Moura A, Servain J, Trotte J (2008) The PIRATA program: history, accomplishments and future directions. Bull Am Met Soc 89(8):1111–1125. doi: 10.1175/2008BAMS2462.1 CrossRefGoogle Scholar
  11. Chatterjee P, Goswami BN (2004) Structure, genesis and scale selection of the tropical quasi biweekly mode. Q J R Met Soc 130:1171–1194. doi: 10.1256/qj.03133 CrossRefGoogle Scholar
  12. Chen TC, Chen JM (1993) The 10–20-day mode of the 1979 Indian monsoon: its relation with the time variation of monsoon rainfall. Mon Weather Rev 121:2465–2482CrossRefGoogle Scholar
  13. Cronin MF, McPhaden MJ (1998) Upper ocean salinity balance in the western equatorial Pacific. J Geophys Res 103(C12):27567–27587. doi: 10.1029/98JC02605 CrossRefGoogle Scholar
  14. Cronin MF, Bourassa M, Clayson CA, Edson J, Fairall C, Feely D, Harrison DE, Josey S, Kubota M, Kumar BP, Kutsuwada K, Large B, Mathis J, McPhaden MJ, O’Neill L, Pinker R, Takahashi K, Tomita H, Mathis J, Weller RA, Yu LS, and Zhang C (2014) White Paper #11—Wind stress and air sea fluxes observations: status, implementation and gaps. Report of the Tropical Pacific Observing System 2020 Workshop (TPOS2020). Volume II -White Papers. GCOS Rep. 184/GOOS Rep. 206/WCRP Rep. 6/2014, pp 272–298Google Scholar
  15. Cummings JA, Smedstad OM (2014) Ocean data impacts in global HYCOM. J Atmos Ocean Technol. doi: 10.1175/JTECH-D-14-00011.1 Google Scholar
  16. Delcroix T, McPhaden MJ (2002) Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J Geophys Res 107(C12):8002. doi: 10.1029/2001JC000862 Google Scholar
  17. Delcroix T, Cravatte S, McPhaden MJ (2007) Decadal variations and trends in tropical Pacific sea surface salinity since 1970. J Geophys Res 112:C03012. doi: 10.1029/2006JC003801 CrossRefGoogle Scholar
  18. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM, Riviere P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi: 10.1029/2007/GL032838 CrossRefGoogle Scholar
  19. Enomoto T, Miyoshi T, Moteki Q, Inoue J, Hattori M, Kuwano-Yoshida A, Komori N, Yamane S (2013) Observing-system research and ensamble data assimilation at JAMSTEC. Data assimilation for Atmospheric, Oceanic and Hydrologic Applications (vol. II). In: Park SK, Xu L (eds). Springer, Berlin, Heidelberg, pp 509–526. doi: 10.1007/978-3-642-35088-7_21
  20. Fine RA, Lukas R, Bingham F, Warner MJ, Gammon RH (1994) The western equatorial Pacific: a water mass crossroads. J Geophys Res 99:25063–25080CrossRefGoogle Scholar
  21. Fujii Y, Kamachi M, Nakaegawa T, Yasuda T, Yamanaka G, Toyoda T, Ando K, Matsumoto S (2011) Assimilating ocean observation data for ENSO monitoring and forecasting. Climate variability—some aspects, challenges and prospects. In: Hannachi A (ed) InTech. Rijeka, Croatia, pp 75–98. doi: 10.5772/30330
  22. Fujii Y, Cummings J, Xue Y, Schiller A, Lee T, Balmaseda MA, Rémy E, Masuda S, Brassington G, Alves O, Cornuelle B, Martin M, Oke P, Smith G, Yang X (2015a) Evaluation of the tropical Pacific observing system from the ocean data assimilation perspective. Q J R Meteorol Soc 141:2481–2496. doi: 10.1002/qj.2579 CrossRefGoogle Scholar
  23. Fujii Y, Cummings J, Xue Y, Schiller A, Lee T, Balmaseda MA, Remy E, Masuda S, Alves O, Brassington G, Cornuelle B, Martin M, Oke P, Smith G, Yang X (2015b) White Paper #5 – Evaluation of the Tropical Pacific Observing System from the data assimilation perspective. Report of the Tropical Pacific Observing System 2020 Workshop (TPOS2020). Volume II -White Papers. GCOS Rep. 184/GOOS Rep. 206/WCRP Rep. 6/2014, pp 102–129Google Scholar
  24. Fujii Y, Ogawa K, Brassington GB, Ando K, Yasuda T, Kuragano T (2015c) Evaluating the impacts of the tropical Pacific observing system on the ocean analysis fields in the global ocean data assimilation system for operational seasonal forecasts in JMA. J Oper Oceanogr 8(1):1–16. doi: 10.1080/1755876X.2015.1014640 Google Scholar
  25. Fukutomi Y, Yasunari T (2005) Southerly surges on the submonthly timescales over the eastern Indian Ocean during the Southern Hemisphere winter. Mon Weather Rev 133(6):1637–1654CrossRefGoogle Scholar
  26. GCOS/GOOS/ICPO (2002) Workshop Report on the International Workshop for Review of the Global Tropical Moored Buoy Network during 10-12 September 2001 in Seattle. GCOS No.77/GOOS No.122/ICPO No. 60, pp 84Google Scholar
  27. GCOS/GOOS/WCRP (2014) Tropical Pacific Observing System 2020 Workshop Volume O: Workshop report and Recommendations. GCOS No. 184/GOOS No. 205/WCRP No.6/2014, pp 66Google Scholar
  28. Halkides DJ, Lee T (2009) Mechanisms controlling seasonal-to-interannual mixed layer temperature variability in the southeastern tropical Indian Ocean. J Geophys Res 114:C02012. doi: 10.1029/2008JC004949 CrossRefGoogle Scholar
  29. Hamada JI, Mori S, Kubota H, Yamanaka MD, Haryoko U, Restari S, Sulistyowati R, Syamsudin F (2012) Interannual rainfall variability over northwestern Jawa and its relation to the Indian Ocean Dipole and El Niño-Southern Oscillation events. SOLA 8:69–72CrossRefGoogle Scholar
  30. Hase H, Kuroda Y (2002) Validation of TRITON buoy current meter performance. Kuroda Y (eds) In TRITON: Present Status and Future Plan (TOCS No.5 report) Part A Technical reports and scientific papers, TRITON Office, March 2002, Yokosuka Japan, pp 44–48Google Scholar
  31. Hase H, Masumoto Y, Kuroda Y, Mizuno K (2008) Semiannual variability in temperature and salinity observed by Triangle Trans-Ocean Buoy Network (TRITON) buoys in the eastern tropical Indian Ocean. J Geophys Res 113:C01016. doi: 10.1029/2006JC004026 CrossRefGoogle Scholar
  32. Hasegawa T, Hanawa K (2003a) Heat content variability related to ENSO events in the Pacific. J Phy Oceanogr 33(2):407–421CrossRefGoogle Scholar
  33. Hasegawa T, Hanawa K (2003b) Decadal-scale variability of upper ocean heat content in the tropical Pacific. Geophys Res Lett 30(6):1272. doi: 10.1029/2002GL016843 CrossRefGoogle Scholar
  34. Hasegawa T, Hanawa K (2007) Upper ocean heat content and atmospheric anomaly fields in the off-equatorial North Pacific related to ENSO. J Oceanogr 63(4):561–572CrossRefGoogle Scholar
  35. Hasegawa T, Horii T, Hanawa K (2006) Two different features of discharge of equatorial upper ocean heat content related to El Niño events. Geophys Res Lett 33:L02609. doi: 10.1029/2005GL024832 CrossRefGoogle Scholar
  36. Hasegawa T, Yasuda T, Hanawa K (2007) Generation mechanism of quasidecadal variability of upper ocean heat content in the equatorial Pacific Ocean. J Geophys Res 112:C08012. doi: 10.1029/2006JC003755 Google Scholar
  37. Hasegawa T, Hanawa K, Tourre YM, White WB (2008) Absence of propagating upper-ocean heat content anomalies in the eastern tropical South Pacific after ENSO events. Geophys Res Lett 35:L09607. doi: 10.1029/2007GL033065 Google Scholar
  38. Hasegawa T, Ando K, Mizuno K, Lukas R (2009) Coastal upwelling along the north coast of Papua New Guinea and SST cooling over the Pacific warm pool: a case study for the 2003/03 El Niño event. J Oceanogr 65(6):817–833CrossRefGoogle Scholar
  39. Hasegawa T, Ando K, Mizuno K, Lukas R, Taguchi B, Sasaki H (2010) Coastal upwelling along the north coast of Papua New Guinea and El Niño event during 1981–2005. Ocean Dyn 60:1255–1269. doi: 10.1007/s10236-010-0334-y CrossRefGoogle Scholar
  40. Hasegawa T, Ando K, Sasaki H (2011) Cold water flow and upper ocean currents in the Bismark Sea from December 2001 to January 2002. J Phys Oceanogr 41(4):827–834. doi: 10.1175/2010JPO4421.1 CrossRefGoogle Scholar
  41. Hasegawa T, Ando K, Ueki I, Mizuno K, Hosoda S (2013) Upper-ocean salinity variability in the tropical Pacific: case study for quasi-decadal shift during the 2000s using TRTION buoys and Argo floats. J Climate 26(20):8126–8138CrossRefGoogle Scholar
  42. Hayes SP, Mangum LJ, Picaut J, Sumi A, Takeuchi K (1991) TOGA-TAO: a moored array for real-time measurements in the tropical Pacific Ocean. Bull Am Meteorol Soc 72(3):339–347CrossRefGoogle Scholar
  43. Horii T, Hase H, Ueki I, Masumoto Y (2008) Oceanic precondition and evolution of the 2006 Indian Ocean Dipole. Geophys Res Lett 35:L03607. doi: 10.1029/2007GL032464 CrossRefGoogle Scholar
  44. Horii T, Masumoto Y, Ueki I, Hase H, Mizuno K (2009) Mixed layer temperature balance in the eastern Indian Ocean during the 2006 Indian Ocean dipole. J Geophys Res 114:C07011. doi: 10.1029/2008JC005180 CrossRefGoogle Scholar
  45. Horii T, Masumoto Y, Ueki I, Kumar SP, Mizuno K (2011) Intraseasonal vertical velocity variation caused by the equatorial wave in the central equatorial Indian Ocean. J Geophys Res 116:C09005. doi: 10.1029/2011JC007081 CrossRefGoogle Scholar
  46. Horii T, Ueki I, Hanawa K (2012) Breakdown of ENSO predictors in the 2000s: decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing. Geophys Res Lett 39:L10707. doi: 10.1029/2012GL051740 CrossRefGoogle Scholar
  47. Horii T, Ueki I, Ando K, Mizuno K (2013a) Eastern Indian Ocean warming associated with the negative Indian Ocean dipole: a case study of the 2010 event. J Geophys Res Oceans 118:536–549. doi: 10.1002/jgrc.20071 CrossRefGoogle Scholar
  48. Horii T, Ueki I, Ando K (2013b) Contrasting development and decay processes of Indian Ocean Dipoles in the 2000s. Sci Online Lett Atmos 9:183–186. doi: 10.2151/sola.2013-041 Google Scholar
  49. Horii T, Mizuno K, Nagura M, Miyama T, Ando K (2013c) Seasonal and interannual variation in the cross-equatorial meridional currents observed in the eastern Indian Ocean. J Geophys Res Oceans 118:6658–6671. doi: 10.1002/2013JC009291 CrossRefGoogle Scholar
  50. Horii T, Ueki I, Ando K, Hasegawa T, Mizuno K, Seiki A (2016) Impact of intraseasonal salinity variations on sea surface temperature in the eastern equatorial Indian Ocean. J Oceanogr 72:313–326. doi: 10.1007/s10872-015-0337-x CrossRefGoogle Scholar
  51. Hosom DS, Weller R, Payne R, Prada K (1995) The IMET (Improved Meteorology) ship and buoy systems. J Atmos Ocean Tech 12(3):527–540. doi: 10.1175/1520-0426(1995)0122.0.CO CrossRefGoogle Scholar
  52. Iskandar I, Masumoto Y, Mizuno K (2009) Subsurface equatorial zonal current in the eastern Indian Ocean. J Geophys Res 114:C06005. doi: 10.1029/2008JC005188 CrossRefGoogle Scholar
  53. Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  54. Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO Part II: a stripped-down coupled model. J Atmos Sci 54:830–847CrossRefGoogle Scholar
  55. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:3615–3632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  56. Kashino Y, Ishida A, Kuroda Y (2005) Variability of the Mindanao Current: mooring observation results. Geophys Res Lett 32:L18611. doi: 10.1029/2005GL023880 CrossRefGoogle Scholar
  57. Kashino Y, Ueki I, Kuroda Y, Purwandani A (2007) Ocean variability north of New Guinea derived from TRITON buoy data. J Oceanogr 63:545–559CrossRefGoogle Scholar
  58. Kashino Y, España N, Syamsudin F, Richards K, Jensen T, Dutrieux P, Ishida A (2009) Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current System during the 2006/07 El Niño and 2007/08 La Niña. J Oceanogr 65:325–333CrossRefGoogle Scholar
  59. Kashino Y, Ishida A, Hosoda S (2011) Observed ocean variability in the Mindanao Dome region. J Phys Oceanogr 41:287–302CrossRefGoogle Scholar
  60. Kashino Y, Atmadipoera A, Kuroda Y, Lukijanto L (2013) Observed features of the Halmahera and Mindanao Eddies. J Geophys Res 118:6543–6560. doi: 10.1002/2013JC009207 CrossRefGoogle Scholar
  61. Kawabe M, Kashino Y, Kuroda Y (2008) Variability and linkages of New Guinea Coastal Undercurrent and lower equatorial intermediate current. J Phys Oceanogr 38:1780–1793CrossRefGoogle Scholar
  62. Kawahara M, Nakamura W, Ushijima N, Sono K, Ando K, Kuroda Y (2000) The result of intercomparison of sea surface meteorology observantion between TRITON and R/V Mirai. JAMSTECTR 40:125–135 (in Japanese) Google Scholar
  63. Kawahara M, Ando K, Kuroda Y, Takatsuki Y (2001) Land site test of optical rain gauge used on TRITON buoy. JAMSTECTR 43:25–35 (in Japanese) Google Scholar
  64. Kawai Y, Kawamura H, Tamba S, Ando K, Yoneyama K, Nagahama N (2006) Validity of sea surface temperature observed with the TRITON buoy under diurnal heating conditions. J Oceanogr 62:825–838CrossRefGoogle Scholar
  65. Kitamura Y, Ishii M, Kimoto M, Kutsuwada K, Kuroda Y, Takano K (1998) An outlook of 97/98 El Nino: focusing on puzzle of “the strongest on record”. Umi no Kenkyu 7:323–331 (in Japanese) Google Scholar
  66. Kubota M, Iwasaka N, Kizu S, Konda M, Kutsuwada K (2002) Japanese Ocean flux data sets with use of remote sensing observations (J-OFURO). J Oceanogr 58:213–225CrossRefGoogle Scholar
  67. Kug JS, Jin FF, An SL (2009) Two types of El Nino events: cold tongue El Nino and warm pool El Nino. J Clim 22:1499–1515CrossRefGoogle Scholar
  68. Kuroda Y (2000) Variability of currents off the northern coast of New Guinea. J Oceanogr 56:103–116CrossRefGoogle Scholar
  69. Kuroda Y (2002) TRITON: Present status and future plan (TOCS No.5 Report). TRTON Office, March 2002, Yokosuka Japan, pp 77Google Scholar
  70. Kuroda Y, Amitani Y (2000) TRITON new ocean and atmosphere observing buoy network for monitoring ENSO. Umi no Kenkyu 10:157–172 (in Japanese) Google Scholar
  71. Kuroda Y, Sono K, Ando K, Freitag HP, McPhaden MJ (2001) In-situ buoy data intercomparison between TRITON and TAO in the western tropical Pacific Ocean. JAMSTECR 43:93–105 (in Japanese) Google Scholar
  72. Kutsuwada K, McPhaden MJ (2001) Intraseasonal variations in the upper equatorial Pacific Ocean prior to and during the 1997-98 El Nino. J Phys Oceanogr 32:1133–1149CrossRefGoogle Scholar
  73. Larkin NK, Harisson ED (2005) On the definition of El Nino and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738 CrossRefGoogle Scholar
  74. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Science 266:634–637CrossRefGoogle Scholar
  75. Lea DJ, Martin MJ, Oke PR (2014) Demonstrating the complementarity of observations in an operational ocean forecasting system. Q J R Meteorol Soc 140(683):2037–2049. doi: 10.1002/qj.2281 CrossRefGoogle Scholar
  76. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357CrossRefGoogle Scholar
  77. Luo JJ, Yamagata T (2001) Long-term El Nino-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J Geophy Res 106(C10):22211–22227CrossRefGoogle Scholar
  78. Madden RA, Julian MJ (1994) Observations of the 40–50-day tropical oscillation-A review. Mon Weather Rev 122:814–837CrossRefGoogle Scholar
  79. Maes C, Belamari S (2011) On the impact of salinity barrier layer on the Pacific Ocean mean state and ENSO. SOLA 7:97–100CrossRefGoogle Scholar
  80. Maes C, Picaut J, Belamari S (2005) Importance of the salinity barrier layer for the buildup of EL Nino. J Clim 18(1):104–118CrossRefGoogle Scholar
  81. Maes C, Ando K, Delcroix T, Kessler WS, McPhaden MJ, Roemmich D (2006) Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool. Geophys Res Lett. doi: 10.1029/2005GL024772 Google Scholar
  82. Mantua JM, Hare SR, Zhung Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78(6):1069–1079CrossRefGoogle Scholar
  83. Masumoto Y, Yamagata T (1991) Response of the western tropical Pacific to the Asian winter monsoon: the generation of the Mindanao Dome. J Phys Oceanogr 21:1386–1398CrossRefGoogle Scholar
  84. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the world ocean–Preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simul 1:35–56Google Scholar
  85. Masumoto Y, Hase H, Kuroda Y, Matsuura H, Takeuchi K (2005) Intraseasonal variability in the upper layer currents observed in the eastern equatorial Indian Ocean. Geophys Res Lett 32:L02607. doi: 10.1029/2004GL021896 CrossRefGoogle Scholar
  86. Masumoto Y, Horii T, Ueki I, Hase H, Ando K, Mizuno K (2008) Short-term upper-ocean variability in the central equatorial Indian Ocean during 2006 Indian Ocean Dipole event. Geophys Res Lett 35:L14S09. doi: 10.1029/2008GL033834 CrossRefGoogle Scholar
  87. Matsumoto T, Nagahama T, Ando K, Ueki I, Kuroda Y, Kakatsuki Y (2001) The time drift of temperature and conductivity sensors of TRITON buoy and the correction of conductivity data. JAMSTECTR 44:139–151 (in Japanese) Google Scholar
  88. Matsumoto T, Katsumata M, Ando K, Ishihara Y, Kuroda Y (2008) Development of an advanced rainfall observation system for TRITON buoy. Umi no Kenkyu 17(4):241–253 (in Japanese) Google Scholar
  89. McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barrier. Geophys Res Lett 30(9):1480. doi: 10.1029/2003GL016872 CrossRefGoogle Scholar
  90. McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. doi: 10.1029/2012GL051826 CrossRefGoogle Scholar
  91. McPhaden MJ, Co-Authors (2010) The Global Tropical Moored Buoy Array. Hall J, Harrison DE, Stammer D (eds) In Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (vol. 2). ESA Publication WPP-306, Venice. doi: 10.5270/OceanObs09.cwp.61
  92. McPhaden MJ, Nagura M (2014) Indian Ocean Dipole interpreted in terms of recharge oscillator theory. Clim Dyn 42:1569–1586. doi: 10.1007/s00382-013-1765-1 CrossRefGoogle Scholar
  93. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum MT, Niiler PP, Picaut J, Reynolds RW, Neville S, Takeuchi K (1998) The Tropical Ocean Global Atmosphere observing system: a decade of progress. J Geophys Res 103(C7):14169–14240CrossRefGoogle Scholar
  94. McPhaden MJ, Delcroix T, Hanawa K, Kuroda Y, Meyers G, Picaut J, Swenson M (2001) The El Niño/Southern Oscillation (ENSO) Observing System. Observing the Ocean in the 21st Century. Aust Bur Meteorol, Melbourne, pp 231–246Google Scholar
  95. McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702. doi: 10.1029/2006GL026786 CrossRefGoogle Scholar
  96. McPhaden MJ, Meyers G, Ando K, Masumoto Y, Murty VSN, Ravichandran M, Syamsudin F, Vialard J, Yu L, Yu W (2009) RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90(4):459–480. doi: 10.1175/2008BAMS2608.1 CrossRefGoogle Scholar
  97. Meinen CS, McPhaden MJ (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. J Clim 13:3551–3559CrossRefGoogle Scholar
  98. Meyers G, Boscolo R (2006) The Indian Ocean Observing System (IndOOS). CLIVAR Exch 11(4):1–3Google Scholar
  99. Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climate regime shift. Geophys Res Lett 26(7):855–858CrossRefGoogle Scholar
  100. Miyama T, Hasegawa T (2014) Impact of sea surface temperature on westerlies over the western Pacific warm pool: Case Study of an Event in 2001/02. SOLA10: 5-9. doi: 10.2151/sola.2014-002
  101. Miyama T, McCreary JP, Jensen TG, Loschnigg J, Godfrey S, Ishida A (2003) Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Res Part II 50:2023–2047CrossRefGoogle Scholar
  102. Murtugudde R, McCreary JP, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105(C2):3295–3306CrossRefGoogle Scholar
  103. Nagura M, McPhaden MJ (2008) The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophys Res Lett 35:L23603. doi: 10.1029/2008GL035961 CrossRefGoogle Scholar
  104. Nagura M, Masumoto Y, Horii T (2014) Meridional heat advection due to mixed Rossby gravity waves in the equatorial Indian Ocean. J Phys Oceanogr 44(1):343–358CrossRefGoogle Scholar
  105. Nitta T, Yamada S (1989) Recent warming of tropical sea-surface temperature and its relationship to the northern hemisphere circulation. J Meteoro Soc Japan 67(3):375–383CrossRefGoogle Scholar
  106. Ocean Observations Panel for Climate (2013) The sixteenth session of the Ocean Observations Panel for Climate GCOS-173 (also GOOS-220 and WCRP-25/2013) 3–5 Sep 2013. Washington DC, p 55Google Scholar
  107. Ogata T, Sasaki H, Murty VSN, Sarma MSS, Masumoto Y (2008) Intraseasonal meridional current variability in the eastern equatorial Indian Ocean. J Geophys Res. doi: 10.1029/2007JC004331 Google Scholar
  108. Oke PR, Balmaseda MA, Benkiran M, Cummings JA, Dombrowsky E, Fujii Y, Guinehut S, Larnicol G, Le Traon PY, Martin MJ (2009) Observing system evaluations using GODAE systems. Oceanogr 22(2):144–153. doi: 10.5670/oceanog.2009.72 CrossRefGoogle Scholar
  109. Oke PR, Larnicol G, Fujii Y, Smith GC, Lea DJ, Guinehut S, Remy E, Balmaseda MA, Rykova T, Surcel-Colan D, Martin MJ, Sellar AA, Mulet S, Turpin V (2015) Assessing the impact of observations on ocean forecasts andcreanalyses: part 1, Global studies. J Oper Oceanogr 8(S1):S49–S62. doi: 10.1080/1755876X.2015.1022067 CrossRefGoogle Scholar
  110. Payne RE, Huang K, Weller RA, Freitag HP, Cronin MF, McPhaden MJ, Meinig C, Kuroda Y, Ushijima N, Reynolds RM (2002) A comparison of buoy meteorological systems. Upper Ocean Processes Group UOP Technical Report 02-05, Woods Hole Oceanographic Institution Technical Report, WHOI-02-10, p 71Google Scholar
  111. Picaut J, Masia F, Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 27:663–666CrossRefGoogle Scholar
  112. Qin HL, Kawamura H, Sakaida F, Ando K (2008) A case study of the tropical Hot Event in November 2006 (HE0611) using a geostationary meteorological satellite and the TAO/TRITON mooring array. J Geophys Res. doi: 10.1029/2007JC004640 Google Scholar
  113. Roemmich D, Johnson GC, Riser S, Davis R, Gilson J, Owens WB, Garzoli SL, Schmid C, Ignaszewski M (2009) The Argo Program observing the glocal ocean with profiling floats. Oceanoraphy 22:34–43. doi: 10.5670/oceanog.2009.36 CrossRefGoogle Scholar
  114. Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25:151–169CrossRefGoogle Scholar
  115. Saji NH, Goswami BH, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  116. Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. High Resolution Numerical Modelling of the Atmosphere and Ocean. Springer, New York, pp 157–185Google Scholar
  117. Schott F, Dengler M, Schoenefeldt R (2002) The shallow overturning circulation of the Indian Ocean. Prog Oceanogr 51:1–123CrossRefGoogle Scholar
  118. Seiki A, Takayabu Y, Yoneyama K, Sato N, Yoshizaki M (2009) The oceanic response to the Madden-Julian Oscillation and ENSO. SOLA 5:093–096. doi: 10.2151/sola2009-24 CrossRefGoogle Scholar
  119. Sprintall J, McPhaden MJ (1994) Surface-layer variations observed in the multiyear time-series measurements from the western equatorial Pacific. J Gephys Res 99(C1):963–979CrossRefGoogle Scholar
  120. Sprintall J, Tomczak M (1992) Evidence of the barrier layer in the surface-layer of the tropics. J Geophys Res 97(C5):7305–7316CrossRefGoogle Scholar
  121. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287CrossRefGoogle Scholar
  122. Tourre YM, Rajagopalan B, Kushnir Y, Barlow M, White WB (2001) Patterns of coherent decadal and interdecadal climate signals in the Pacific basin during the 20th century. Geophys Res Lett 28(10):2069–2072CrossRefGoogle Scholar
  123. Tozuka T, Kagimoto T, Masumoto Y, Yamagata T (2002) Simulated multiscale variations in the western tropical Pacific: the Mindanao Dome revisited. J Phys Oceanogr 32:1338–1359CrossRefGoogle Scholar
  124. Trenberth KE (1990) Recent observed interdecadal climate changes in the northern hemisphere. Bull Am Metero Soc 71(7):988–993CrossRefGoogle Scholar
  125. Ueki I (2011) Evidence of wind-evaporation-sea surface temperature (WES) feedback in the western Pacific warm pool during the mature phase of the 1997-98 El Nino. Geophys Res Lett 38:L11603. doi: 10.1029/2011GL047179 CrossRefGoogle Scholar
  126. Ueki I, Ando K (2013) Detection of Pacific Tropical Water variability by taut-line moorings in the western equatorial Pacific. J Oceanogr 69:429–441. doi: 10.1007/s10872-013-0184-6 CrossRefGoogle Scholar
  127. Ueki I, Ando K, Kuroda Y, Kutsuwada K (2002) Salinity variation and its effect on dynamic height along the 156E in the Pacific warm pool. Geophys Res Let. doi: 10.1029/2001GL013993 Google Scholar
  128. Ueki I, Kashino Y, Kuroda Y (2003a) Observation of current variations off the New Guinea coast including the 1997–1998 El Niño period and their relationship with Sverdrup transport. J Geophys Res 108:3243. doi: 10.1029/2002JC001611 CrossRefGoogle Scholar
  129. Ueki I, Matsumoto T, Nagahama T, Ando K, Kuroda Y (2003b) Improvement of the correction method for time drifts of TRITON buoy conductivity sensors (in Japanese with English abstract). JAMSTECTR 47:49–67Google Scholar
  130. Ueki I, Fujii N, Masumoto Y, Mizuno K (2010) Data evaluation for newly developed slack-line mooring buoy deployed in the eastern Indian Ocean. J Atmos Ocean Technol 27:1195–1214. doi: 10.1175/2010JTECHO735.1 CrossRefGoogle Scholar
  131. Vecchi GA (2006) The termination of the 1997–98 El Niño Part II: mechanisms of atmospheric change. J Clim 19:2647–2664CrossRefGoogle Scholar
  132. Vinayachandran PN, Iizuka S, Yamagata T (2002) Indian Ocean dipole mode events in an ocean general circulation model. Deep Sea Res Part (II) 49:1573–1596CrossRefGoogle Scholar
  133. Vinayachandran PN, Kurian J, Neema CP (2007) Indian Ocean response to anomalous conditions in 2006. Geophys Res Lett 34:L15602. doi: 10.1029/2007GL030194 CrossRefGoogle Scholar
  134. Wacongne S, Pakanowski RC (1996) Seasonal heat transport in a primitive equation model of the tropical Indian Ocean. J Phys Oceanogr 26:2666–2699CrossRefGoogle Scholar
  135. Webster PJ, Moore AM, Loschnig JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401:356–360CrossRefGoogle Scholar
  136. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Nino-Southern Oscillation. Geophys Res Lett 24(7):779–782CrossRefGoogle Scholar
  137. White WB, Tourre YM, Barlow M, Dettinger M (2003) A delayed action oscillator shared by biennial, interannual, and decadal signals in the Pacifc Basin. J Geophys Res 108(C3):3070. doi: 10.1029/2002JC001490 CrossRefGoogle Scholar
  138. Wyrtki K (1961) Physical oceanography of the southeast Asian waters. NAGA Rep 2, Scripps Inst of Oceanogr, Univ of Calif, San Diego, La Jolla, p 195Google Scholar
  139. Wyrtki K (1973) An equatorial jet in the Indian Ocean. Science 181:262–264. doi: 10.1126/science.181.4096.262 CrossRefGoogle Scholar
  140. Wyrtki K (1975) Fluctuations of the dynamics topography in the Pacific ocean. J Phys Oceanogr 5:450–459CrossRefGoogle Scholar
  141. Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus Ser Dyn Meteorol Oceanogr 46(4):340–350CrossRefGoogle Scholar
  142. Yoneyama K et al (2008) MISMO field experiment in the equatorial Indian Ocean. Bull Am Meteor Soc 89(12):1889–1903CrossRefGoogle Scholar
  143. Yu LS, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005). Bull Am Meteor Soc 88(4):527–539CrossRefGoogle Scholar
  144. Zebiak SE, Cane M (1987) A model El Nino Southern Oscillation. Mon Wea Rev 115(10):2262–2278. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Kentaro Ando
    • 1
  • Yoshifumi Kuroda
    • 1
  • Yosuke Fujii
    • 2
  • Tatsuya Fukuda
    • 1
  • Takuya Hasegawa
    • 1
  • Takanori Horii
    • 1
  • Yasuhisa Ishihara
    • 1
  • Yuji Kashino
    • 1
  • Yukio Masumoto
    • 3
  • Keisuke Mizuno
    • 1
  • Motoki Nagura
    • 1
  • Iwao Ueki
    • 1
  1. 1.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  2. 2.Meteorological Research InstituteTsukubaJapan
  3. 3.University of TokyoTokyoJapan

Personalised recommendations