Journal of Oceanography

, Volume 73, Issue 4, pp 427–438 | Cite as

Statistical features of eddies approaching the Kuroshio east of Taiwan Island and Luzon Island

  • Yu-Hsin Cheng
  • Chung-Ru Ho
  • Quanan Zheng
  • Bo Qiu
  • Jianyu Hu
  • Nan-Jung Kuo
Original Article


This study examined the statistical features of eddies approaching the Kuroshio east of Taiwan Island and Luzon Island. In total, 315 eddies (138 anticyclonic and 177 cyclonic eddies) were detected from 19.5 years of satellite altimeter sea-level data, with more than 95% of these eddies being generated in the ocean west of the Mariana Islands. Eddy trajectory statistics indicated that eddies frequently intrude into the Kuroshio regime at two latitude bands, namely 18°N–19°N and 22°N–23°N, with periods of 146 ± 62 and 165 ± 46 days, respectively. The interaction time is longer within the two active bands (33 ± 10 days at 18°N–19°N and 45 ± 17 days at 22°N–23°N) than at other latitudes. These two eddy-intrusion bands are associated with the northern and southern Subtropical Countercurrents (STCCs). These STCCs have a vertically reversed sign of the meridional potential vorticity gradient, thus providing a key energy source for eddy generation. In addition, when westward-propagating eddies approach the Ryukyu Islands, the southwestward recirculation flow east of the island chain as well as topographic effects cause some eddies to head southwestward to the east of Taiwan and intrude into the Kuroshio at 22°N–23°N, rather than to dissipate directly. Therefore, we suggest that the STCCs play a key role in inducing the eddies to frequently intrude into the Kuroshio at 18°N–19°N and 22°N–23°N. In addition, the Ryukyu Islands are responsible for concentrating the eddies within 22°N–23°N.


Ocean eddy Kuroshio Subtropical Countercurrent Ryukyu Islands Satellite altimetry 



The authors appreciate all of the constructive comments from reviewers. The altimeter products used in this study were produced by Ssalto/Duacs and distributed by AVISO, with support from CNES ( The eddy data set was produced by Dudley B. Chelton and Michael G. Schlax ( Cheng and Ho were supported by the National Science Council of Taiwan (NSC 101-2611-M-019-003 and NSC 102-2611-M-019-011). Cheng and Hu were supported by the National Natural Science Foundation of China (U1405233).


  1. Andres M, Cenedese C (2013) Laboratory experiments and observations of cyclonic and anticyclonic eddies impinging on an island. J Geophys Res Oceans 118(2):762–773. doi: 10.1002/jgrc.20081 CrossRefGoogle Scholar
  2. Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi: 10.1029/2007GL030812
  3. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91(2):167–216. doi: 10.1016/j.pocean.2011.01.002 CrossRefGoogle Scholar
  4. Cushman-Roisin B, Tang B, Chassignet EP (1990) Westward motion of mesoscale eddies. J Phys Oceanogr 20(5):758–768. doi: 10.1175/1520-0485(1990)020<0758:wmome>;2 CrossRefGoogle Scholar
  5. Ebuchi N, Hanawa K (2001) Trajectory of mesoscale eddies in the Kuroshio recirculation region. J Oceanogr 57(4):471–480. doi: 10.1023/A:1021293822277 CrossRefGoogle Scholar
  6. Escudier R, Renault L, Pascual A, Brasseur P, Chelton D, Beuvier J (2016) Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation. J Geophys Res Oceans 121(6):3990–4006. doi: 10.1002/2015JC011371 CrossRefGoogle Scholar
  7. Hasunuma K, Yoshida K (1978) Splitting of the subtropical gyre in the western North Pacific. J Oceanogr Soc Jpn 34(4):160–172. doi: 10.1007/BF02108654 CrossRefGoogle Scholar
  8. Hu J, Zheng Q, Sun Z, Tai C-K (2012) Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. J Geophys Res Oceans. doi: 10.1029/2011JC007525 Google Scholar
  9. Hwang C, Wu C-R, Kao R (2004) TOPEX/Poseidon observations of mesoscale eddies over the Subtropical Countercurrent: kinematic characteristics of an anticyclonic eddy and a cyclonic eddy. J Geophys Res Oceans 109:C08013. doi: 10.1029/2003JC002026
  10. Ichikawa K, Tokeshi R, Kashima M, Sato K, Matsuoka T, Kojima S, Fujii S (2008) Kuroshio variations in the upstream region as seen by HF radar and satellite altimetry data. Int J Remote Sens 29(21):6417–6426. doi: 10.1080/01431160802175454 CrossRefGoogle Scholar
  11. Isern-Fontanet J, García-Ladona E, Font J (2006) Vortices of the Mediterranean Sea: an altimetric perspective. J Phys Oceanogr 36(1):87–103. doi: 10.1175/JPO2826.1 CrossRefGoogle Scholar
  12. Johns WE, Lee TN, Zhang D, Zantopp R, Liu C-T, Yang Y (2001) The Kuroshio east of Taiwan: moored transport observations from the WOCE PCM-1 array. J Phys Oceanogr 31(4):1031–1053. doi: 10.1175/1520-0485(2001)031<1031:TKEOTM>2.0.CO;2 CrossRefGoogle Scholar
  13. Kida S, Mitsudera H, Aoki S, Guo X, S-i Ito, Kobashi F, Komori N, Kubokawa A, Miyama T, Morie R, Nakamura H, Nakamura T, Nakano H, Nishigaki H, Nonaka M, Sasaki H, Sasaki YN, Suga T, Sugimoto S, Taguchi B, Takaya K, Tozuka T, Tsujino H, Usui N (2015) Oceanic fronts and jets around Japan: a review. J Oceanogr 71(5):469–497. doi: 10.1007/s10872-015-0283-7 CrossRefGoogle Scholar
  14. Kobashi F, Kawamura H (2001) Variation of sea surface height at periods of 65–220 days in the subtropical gyre of the North Pacific. J Geophys Res: Oceans 106(C11):26817–26831. doi: 10.1029/2000JC000361 CrossRefGoogle Scholar
  15. Kobashi F, Kawamura H (2002) Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J Geophys Res Oceans 107(C11):3185. doi: 10.1029/2001JC001225
  16. Kobashi F, Mitsudera H, Xie S-P (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res Oceans 111:C09033. doi: 10.1029/2006JC003479
  17. Kuo Y-C, Chern C-S (2011) Numerical study on the interactions between a mesoscale eddy and a western boundary current. J Oceanogr 67(3):263–272. doi: 10.1007/s10872-011-0026-3 CrossRefGoogle Scholar
  18. Lee I-H, Ko DS, Wang Y-H, Centurioni L, Wang D-P (2013) The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003–2010) model reanalysis. Ocean Dyn 63(9–10):1027–1040. doi: 10.1007/s10236-013-0643-z CrossRefGoogle Scholar
  19. Liang W-D, Tang T, Yang Y, Ko M, Chuang W-S (2003) Upper-ocean currents around Taiwan. Deep Sea Res Part II 50(6):1085–1105CrossRefGoogle Scholar
  20. Lien R-C, Ma B, Cheng Y-H, Ho C-R, Qiu B, Lee CM, Chang M-H (2014) Modulation of Kuroshio transport by mesoscale eddies at the Luzon Strait entrance. J Geophys Res Oceans 119(4):2129–2142. doi: 10.1002/2013JC009548 CrossRefGoogle Scholar
  21. Maximenko N, Niiler P, Centurioni L, Rio M-H, Melnichenko O, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Technol 26(9):1910–1919. doi: 10.1175/2009JTECHO672.1 CrossRefGoogle Scholar
  22. Morrow R, Birol F, Griffin D, Sudre J (2004) Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys Res Lett. doi: 10.1029/2004GL020974 Google Scholar
  23. Nakamura H, Ichikawa H, Nishina A (2007) Numerical study of the dynamics of the Ryukyu Current system. J Geophys Res: Oceans 112:C04016. doi: 10.1029/2006JC003595
  24. Petersen MR, Williams SJ, Maltrud ME, Hecht MW, Hamann B (2013) A three-dimensional eddy census of a high-resolution global ocean simulation. J Geophys Res: Oceans 118(4):1759–1774. doi: 10.1002/jgrc.20155 CrossRefGoogle Scholar
  25. Qiu B (1999) Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J Phys Oceanogr 29(10):2471–2486. doi: 10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2 CrossRefGoogle Scholar
  26. Qiu B (2001) Kuroshio and Oyashio currents. In: Thorpe SA (ed) A derivative of the Encyclopedia of Ocean Sciences: ocean currents. Academic, Waltham, pp 1413–1425Google Scholar
  27. Qiu B, Chen S (2013) Concurrent decadal mesoscale eddy modulations in the western North Pacific subtropical gyre. J Phys Oceanogr 43(2):344–358. doi: 10.1175/JPO-D-12-0133.1 CrossRefGoogle Scholar
  28. Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res Oceans 116:C07018. doi: 10.1029/2010JC006505
  29. Sheu W-J, Wu C-R, Oey L-Y (2010) Blocking and westward passage of eddies in the Luzon Strait. Deep Sea Res Part II 57(19):1783–1791. doi: 10.1016/j.dsr2.2010.04.004 CrossRefGoogle Scholar
  30. Smith DC, O’Brien J (1983) The interaction of a two-layer isolated mesoscale eddy with bottom topography. J Phys Oceanogr 13(9):1681–1697. doi: 10.1175/1520-0485(1983)013<1681:TIOATL>2.0.CO;2 CrossRefGoogle Scholar
  31. Souza JMAC, de Boyer Montégut C, Le Traon PY (2011) Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci 7(3):317–334. doi: 10.5194/os-7-317-2011 CrossRefGoogle Scholar
  32. Thoppil PG, Metzger EJ, Hurlburt HE, Smedstad OM, Ichikawa H (2016) The current system east of the Ryukyu Islands as revealed by a global ocean reanalysis. Prog Oceanogr 141:239–258. doi: 10.1016/j.pocean.2015.12.013 CrossRefGoogle Scholar
  33. Tsai CJ, Andres M, Jan S, Mensah V, Sanford TB, Lien RC, Lee CM (2015) Eddy–Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophys Res Lett 42:8098–8105. doi: 10.1002/2015GL065814
  34. Waterman S, Hogg NG, Jayne SR (2011) Eddy–mean flow interaction in the Kuroshio Extension region. J Phys Oceanogr 41(6):1182–1208. doi: 10.1175/2010JPO4564.1
  35. Yang Y, Liu C-T, Hu J-H, Koga M (1999) Taiwan current (Kuroshio) and impinging eddies. J Oceanogr 55(5):609–617. doi: 10.1023/A:1007892819134
  36. Yang G, Wang F, Li Y, Lin P (2013) Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures. J Geophys Res: Oceans 118(4):1906–1925. doi: 10.1002/jgrc.20164 CrossRefGoogle Scholar
  37. Zhai X, Johnson HL, Marshall DP (2010) Significant sink of ocean-eddy energy near western boundaries. Nature Geosci 3(9):608–612. doi: 10.1038/ngeo943 CrossRefGoogle Scholar
  38. Zhang D, Lee TN, Johns WE, Liu C-T, Zantopp R (2001) The Kuroshio east of Taiwan: modes of variability and relationship to interior ocean mesoscale eddies. J Phys Oceanogr 31(4):1054–1074. doi: 10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2 CrossRefGoogle Scholar
  39. Zheng Q, Tai C-K, Hu J, Lin H, Zhang R-H, Su F-C, Yang X (2011) Satellite altimeter observations of nonlinear Rossby eddy–Kuroshio interaction at the Luzon Strait. J Oceanogr 67(4):365–376. doi: 10.1007/s10872-011-0035-2 CrossRefGoogle Scholar
  40. Zhu X-H, Ichikawa H, Ichikawa K, Takeuchi K (2004) Volume transport variability southeast of Okinawa Island estimated from satellite altimeter data. J Oceanogr 60(6):953–962. doi: 10.1007/s10872-005-0004-8 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Yu-Hsin Cheng
    • 1
  • Chung-Ru Ho
    • 2
  • Quanan Zheng
    • 3
  • Bo Qiu
    • 4
  • Jianyu Hu
    • 1
  • Nan-Jung Kuo
    • 2
  1. 1.State Key Laboratory of Marine Environmental Science, College of Ocean and Earth SciencesXiamen UniversityXiamenChina
  2. 2.Department of Marine Environmental InformaticsNational Taiwan Ocean UniversityKeelungTaiwan
  3. 3.Department of Atmospheric and Oceanic ScienceUniversity of Maryland, College ParkCollege ParkUSA
  4. 4.Department of OceanographyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations