Journal of Oceanography

, Volume 73, Issue 3, pp 345–364 | Cite as

Seasonal dynamics influencing coastal primary production and phytoplankton communities along the southern Myanmar coast

  • Maung-Saw-Htoo-Thaw
  • Shizuka Ohara
  • Kazumi Matsuoka
  • Tatsuya Yurimoto
  • Shota Higo
  • Khin-Ko-Lay
  • Win-Kyaing
  • Myint-Shwe
  • Sein-Thaung
  • Yin-Yin-Htay
  • Nang-Mya-Han
  • Khin-Maung-Cho
  • Si–Si-Hla-Bu
  • Swe-Thwin
  • Kazuhiko KoikeEmail author
Original Article


Myanmar is tenth among the world’s fish-producing countries and third in ASEAN (Association of Southeast Asian Nations). To understand the mechanisms underlying the high production, oceanographic and phytoplankton surveys, including primary productivity measurements based on pulse amplitude modulation fluorometry, were conducted near an active fishing ground near Myeik City. Three surveys, one in each of the representative seasons and covering the characteristic coastal environments, showed well-defined seasonality in primary production and phytoplankton occurrence. End of the dry season was the most productive, with productivity of 2.59 ± 1.56 g C m−2 day−1 and high concentration of chlorophyll a (3.14 ± 2.64 µg L−1). In this season, the phytoplankton population was dominated by high densities of the diatoms Bellerochea horologicalis and Chaetoceros curvisetus, whereas primary productivity was low at the onset of the dry season, 1.36 ± 0.77 g C m−2 day−1. However, this low primary production might be compensated by activation of microbial food chains originating from high dissolved organic carbon. The rainy season exhibited the lowest production, 6.6% of the end of the dry season, due to the extensive discharge of turbid water from the rivers which lowered euphotic layer depth and resulted in an unusually high diffuse attenuation coefficient of 2.30 ± 1.03 m−1. This incident of turbid water may be related to soil erosion from deforestation and mangrove deterioration. This research reveals the seasonal trend in Myanmar’s coastal productivity and its relationship to the tropical monsoon climate as well as emphasizing the importance of tropical coastal environments to the sustainability of the fisheries.


Myanmar Southeast Asia Primary production Phytoplankton Diatom Dinoflagellate Monsoon Mangrove Coastal environment Andaman Sea Pulse amplitude modulation fluorometry 



This work was supported by JSPS KAKENHI Grant Number JP 26304031 to KK as well as a Grant-in-Aid for Project Research (2011) from the Graduate School of Biosphere Science, Hiroshima University. We would like to thank the officers from the Department of Fisheries (Myeik) and staffs from Myeik University, Myanmar, for their collaboration and assistance with our field sampling surveys. We also give grateful to the Myanmar Fisheries Federation (MFF) for the kindly support during our visit to Myanmar.

Supplementary material

10872_2016_408_MOESM1_ESM.pdf (161 kb)
Supplementary material 1 (PDF 161 kb)
10872_2016_408_MOESM2_ESM.pdf (162 kb)
Supplementary material 2 (PDF 161 kb)
10872_2016_408_MOESM3_ESM.pdf (64 kb)
Supplementary material 3 (PDF 63 kb)


  1. Ayukai T, Miller D, Wolanski E, Spagnol S (1998) Fluxes of nutrients and dissolved and particulate organic matter in two mangrove creeks in northeastern Australia. Mangroves Salt Marshes 2:223–230. doi: 10.1023/A:1009923410116 CrossRefGoogle Scholar
  2. Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. doi: 10.3354/meps010257 CrossRefGoogle Scholar
  3. Behrenfled MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25. doi: 10.1046/j.1529-8817.2004.03083.x CrossRefGoogle Scholar
  4. Boonyapiwat S, Tienpisut K, Ngowsakul W (2007) Abundance and distribution of phytoplankton in Myanmar waters. Preliminary report on fishery resources survey in the waters of Myanmar. MV. SEAFDEC 2 Cruise no. 23-1/2007. Department of Fisheries, BangkokGoogle Scholar
  5. Boonyapiwat S, Sada MD, Mandal JK, Sinha MK (2008) Species composition, abundance and distribution of phytoplankton in the Bay of Bengal. The ecosystem-based fishery management in the Bay of Bengal. Department of Fisheries, BangkokGoogle Scholar
  6. Cloern JE (1987) Turbidity as a control on phytoplankton biomass and productivity in estuaries. Contin Shelf Res 7:1367–1381. doi: 10.1016/0278-4343(87)90042-2 CrossRefGoogle Scholar
  7. Cloern JE, Foster SQ, Kleckner AE (2013) Review: phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosci Discuss 10:17725–17783. doi: 10.5194/bgd-10-17725-2013 CrossRefGoogle Scholar
  8. Cole J, Findlay S, Pace M (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10. doi: 10.3354/meps043001 CrossRefGoogle Scholar
  9. Cosgrove J, Borowitzka M (2006) Applying pulse amplitude modulation (PAM) fluorometry to microalgae suspensions: stirring potentially impacts fluorescence. Photosynth Res 88:343–350. doi: 10.1007/s11120-006-9063-y CrossRefGoogle Scholar
  10. Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plankton Res 11:1–13. doi: 10.1093/plankt/11.1.1 CrossRefGoogle Scholar
  11. Department of Fisheries (DOF) (2004) National report of Myanmar on the sustainable management of the Bay of Bengal large marine ecosystem. Department of Fisheries, YangonGoogle Scholar
  12. Department of Fisheries (DOF) (2014) Fisheries statistics 2014. Department of Fisheries, YangonGoogle Scholar
  13. Dittmar T, Lara R (2001) Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River? Evidence from long-term flux measurements. Mar Ecol Prog Ser 213:67–77. doi: 10.3354/meps213067 CrossRefGoogle Scholar
  14. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Princeton University Press, Malden, p 118Google Scholar
  15. Flameling IA, Kromkamp J (1998) Light dependence of quantum yields for PSII charge separation and oxygen evolution in eucaryotic algae. Limnol Oceangr 43:284–297. doi: 10.4319/lo.1998.43.2.0284 CrossRefGoogle Scholar
  16. Food and Agriculture Organization of the United Nations (2015a) The state of world fisheries and aquaculture. Food and Agriculture Organization, RomeGoogle Scholar
  17. Food and Agriculture Organization of the United Nations (2015b) Myanmar global forest resources assessment country report. Food and Agriculture Organization, RomeGoogle Scholar
  18. Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358Google Scholar
  19. Furio EF, Borja VM (2000) The primary productivity in the South China sea, area III: Western Philippines. In: Proceedings of the SEAFDEC seminar on fishery resources in the South China Sea, area III: Western Philippines. Southeast Asian Fisheries Development Center, Bangkok, pp 235–250Google Scholar
  20. Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi: 10.1016/S0304-4165(89)80016-9 CrossRefGoogle Scholar
  21. Giesen W, Wulffraat S, Zieren M, Scholten L (2006) Mangrove guidebook for Southeast Asia. Food and Agriculture Organization and Wetlands International, Bangkok, p 40Google Scholar
  22. Gilbert M, Domin A, Becker A, Wilhelm C (2000) Estimation of primary productivity by chlorophyll a in vivo fluorescence in fresh water phytoplankton. Photosynthetica 38:111–126. doi: 10.1023/A:1026708327185 CrossRefGoogle Scholar
  23. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. doi: 10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  24. Goto N, Miyazaki H, Nakamura N, Terai H, Ishida N, Mitamura O (2008) Relationships between electron transport rates determined by pulse amplitude modulated (PAM) chlorophyll fluorescence and photosynthetic rates by traditional and common methods in natural freshwater phytoplankton. Fund Appl Lim 172:121–134. doi: 10.1127/1863-9135/2008/0172-0121 CrossRefGoogle Scholar
  25. Hancke K, Sorrell BK, Chresten Lund-Hansen L, Larsen M, Hancke T, Glud RN (2014) Effects of temperature and irradiance on a benthic microalgae community: a combined two-dimensional oxygen and fluorescence imaging approach. Limnol Oceangr 59:1599–1611. doi: 10.4319/lo.2014.59.5.1599 CrossRefGoogle Scholar
  26. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. ICES J Mar Sci 30:3–15. doi: 10.1093/icesjms/30.1.3 CrossRefGoogle Scholar
  27. Hoppenrath M, Elbrächter M, Drebes G (2009) Marine phytoplankton: selected microphytoplankton species from the North Sea around Helgoland and Sylt. Schweizerbart Science, Stuttgart, p 106Google Scholar
  28. Hu D, Saito Y, Kempe S (2001) Sediment and nutrient transport to the coastal zone. In: Galloway JN, Melillo JM (eds) Asian change in the context of global climate change: impact of natural and anthropogenic changes in Asia on global biogeochemical cycles. IGBP Publication Series 3. Cambridge University Press, Cambridge, pp 245–270Google Scholar
  29. Huang L, Jian W, Song X, Huang X, Liu S, Qian P, Yin K, Wu M (2004) Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar Pollut Bull 49:588–596. doi: 10.1016/j.marpolbul.2004.03.015 CrossRefGoogle Scholar
  30. Iriarte A, Daneri G, Garcia VMT, Purdie DA, Crawford DW (1991) Plankton community respiration and its relationship to cholorophyll a concentration in marine coastal waters. Oceanol Acta 14(4):379–388Google Scholar
  31. Jahn R, Schmid AM (2007) Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species. Eur J Phycol 42:295–312. doi: 10.1080/09670260701428864 CrossRefGoogle Scholar
  32. Japan Meteorological Agency (2016) The world weather data home page Accessed 30 March 2016
  33. Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse-amplitude-modulated and fast-repetition-rate fluorometry. J Phycol 43:1236–1251. doi: 10.1111/j.1529-8817.2007.00422.x CrossRefGoogle Scholar
  34. Kamba M, Yuki K (1980) Plankton of Burmese coasts. Tokai University Institutes of Ocean Research Development notes, vol 2. Tokai Daigaku Kaiyo Kenkyujo, Tokyo, pp 89–146Google Scholar
  35. Karydis M (2009) Eutrophication assessment of coastal waters based on indicators: a literature review. Glob Nest J 11:373–390Google Scholar
  36. Kostoglidis A, Pattiaratchi CB, Hamilton DP (2005) CDOM and its contribution to the underwater light climate of a shallow, microtidal estuary in south-western Australia. Estuar Coast Shelf Sci 63:469–477. doi: 10.1016/j.ecss.2004.11.016 CrossRefGoogle Scholar
  37. Kulkarni VA, Jagtap TG, Mhalsekar NM, Naik AN (2010) Biological and environmental characteristics of mangrove habitats from Manori creek, West Coast, India. Environ Monit Assess 168:587–596. doi: 10.1007/s10661-009-1136-x CrossRefGoogle Scholar
  38. Lee JHW, Hodgkiss IJ, Wong KTM, Lam IHY (2005) Real time observations of coastal algal blooms by an early warning system. Estuarine Coast Shelf Sci 65:172–190. doi: 10.1016/j.ecss.2005.06.005 CrossRefGoogle Scholar
  39. Lirdwitayaprasit P, Nuangsang C, Puewkhao P, Rahman MJ, Oo AH, Sein AW (2008) Composition, abundance and distribution of fish larvae in the Bay of Bengal. SEAFDEC, Bangkok, pp 93–124Google Scholar
  40. Lund-Hansen LC, Nielsen JM, Blüthgen J, Hai DN, Nielsen MH, Lam NN (2013) Estuarine morphometry governs optically active substances, Kd (PAR) and beam attenuation: assessments from a tropical ria and a temperate coastal plain estuary. Hydrobiologia 711:19–30. doi: 10.1007/s10750-013-1457-1 CrossRefGoogle Scholar
  41. Lwin Y (2009) NGO fights erosion with mangrove. Myanmar Times. Accessed 31 March 2016
  42. Madhu NV, Jyothibabu R, Maheswaran PA, John Gerson V, Gopalakrishnan TC, Nair KKC (2006) Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal. Contin Shelf Res 26:1868–1883. doi: 10.1016/j.csr.2006.06.004 CrossRefGoogle Scholar
  43. McMahon TG, Raine RCT, Fast T, Kies L, Patching JW (1992) Phytoplankton biomass, light attenuation and mixing in the Shannon estuary, Ireland. J Mar Biol Assoc 72:709–720. doi: 10.1017/S0025315400059464 CrossRefGoogle Scholar
  44. Menzel DW, Hulburt EM, Tyther JH (1963) The effects of enriching Sargasso Sea water on the production and species composition of the phytoplankton. Deep Sea Res Oceangr Abstr 10:209–219. doi: 10.1016/0011-7471(63)90357-7 CrossRefGoogle Scholar
  45. Napoléon C, Claquin P (2012) Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach. PLoS One 7:12. doi: 10.1371/journal.pone.0040284 CrossRefGoogle Scholar
  46. Nishikawa T, Hori Y (2004) Effects of nitrogen, phosphorus and silicon on a growth of a diatom Coscinodiscus wailesii causing Porphyra bleaching isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi 70:872–878. doi: 10.2331/suisan.70.872 CrossRefGoogle Scholar
  47. Nixon SW, Furnas BN, Lee V, Marshall N, Ong JE, Wong CH, Gong WK, Sasekumar A (1984) The role of mangroves in the carbon and nutrient dynamics of Malaysia estuaries. In: Soepadmo E, Rao AN, Macintosh DJ (eds) Proceedings of the Asian symposium on mangrove environments: research and management, pp 535–544Google Scholar
  48. Pastoureaud A, Dupuy C, Chrétiennot-Dinet MJ, Lantoine F, Loret P (2003) Red coloration of oysters along the French Atlantic coast during the 1998 winter season: implication of nanoplanktonic cryptophytes. Aquaculture 228:225–235. doi: 10.1016/S0044-8486(03)00266-7 CrossRefGoogle Scholar
  49. Pednekar SM, Matondkar SGP, Kerkar V (2012) Spatiotemporal distribution of harmful algal flora in the tropical estuarine complex of Goa, India. Sci World J 2012:596276. doi: 10.1100/2012/596276 CrossRefGoogle Scholar
  50. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  51. Platt T, Harrison WG, Horne EPW, Irwin B (1987) Carbon fixation and oxygen evolution by phytoplankton in the Canadian high arctic. Polar Biol 8:103–113. doi: 10.1007/BF00297064 CrossRefGoogle Scholar
  52. Qasim SZ, Bhattathiri PMA, Devassy VP (1972a) The influence of salinity on the rate of photosynthesis and abundance of some tropical phytoplankton. Mar Biol 12:200–206. doi: 10.1007/BF00346767 CrossRefGoogle Scholar
  53. Qasim SZ, Bhattathiri PMA, Devassy VP (1972b) The effect of intensity and quality of illumination on the photosynthesis of some tropical marine phytoplankton. Mar Biol 16:22–27. doi: 10.1007/BF00347843 CrossRefGoogle Scholar
  54. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed 14 March 2014
  55. Rangarajan K, Marichamy R (1972) Seasonal changes in the temperature, salinity and plankton volume at Port Blair, Andamans. Indian J Fish 19:61–69Google Scholar
  56. Ribas-Ribas M, Gómez-Parra A, Forja JM (2011) Spatio-temporal variability of the dissolved organic carbon and nitrogen in a coastal area affected by river input: the north eastern shelf of the gulf of Cádiz (SW Iberian Peninsula). Mar Chem 126:295–308. doi: 10.1016/j.marchem.2011.07.003 CrossRefGoogle Scholar
  57. Roy NS, Kaur S (2000) Climatology of monsoon rains of Myanmar (Burma). Int J Climatol 20:913–928CrossRefGoogle Scholar
  58. Sorokin Y (2006) Decomposition of organic matter and nutrient regeneration. In: Kinne O (ed) Marine ecology: a comprehensive, integrated treatise on life in oceans and coastal waters. Wiley-Interscience, London, pp 501–616Google Scholar
  59. Sournia A (1969) Cycle annuel du phytoplancton et de la production primaire dans les mers tropicales. Mar Biol 3:287–303. doi: 10.1007/BF00698859 CrossRefGoogle Scholar
  60. Southeast Asian Fisheries Development Center (SEAFDEC) (2006) SEAFDEC mission 2006 survey and information collection on surimi industry and catch data in Myanmar from 26 February to 5 March 2006Google Scholar
  61. Su-Myat, Koike K (2013) A red tide off the Myanmar coast: morphological and genetic identification of the dinoflagellate composition. Harmful Algae 27:149–158. doi: 10.1016/j.hal.2013.05.010 CrossRefGoogle Scholar
  62. Su-Myat, Maung-Saw-Htoo-Thaw, Matsuoka K, Khin-Ko-Lay Koike K (2012) Phytoplankton surveys off the southern Myanmar coast of the Andaman Sea: an emphasis on dinoflagellates including potentially harmful species. Fish Sci 78:1091–1106. doi: 10.1007/s12562-012-0534-0 CrossRefGoogle Scholar
  63. Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J Oceanogr Soc Jpn 46:190–194. doi: 10.1007/BF02125580 CrossRefGoogle Scholar
  64. Syvitski JP, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380. doi: 10.1126/science.1109454 CrossRefGoogle Scholar
  65. Tada K, Monaka K, Morishita M, Hashimoto T (1998) Standing stocks and production rates of phytoplankton and abundance of bacteria in the Seto Inland Sea, Japan. J Oceanogr 54:285–295. doi: 10.1007/BF02742613 CrossRefGoogle Scholar
  66. Vant WN (1990) Causes of light attenuation in nine New Zealand estuaries. Estuar Coast Shelf Sci 31:125–137. doi: 10.1016/0272-7714(90)90042-P CrossRefGoogle Scholar
  67. Wu ML, Wang YS (2007) Using chemometrics to evaluate anthropogenic effects in Daya Bay, China. Estuar Coast Shelf Sci 72:732–742. doi: 10.1016/j.ecss.2006.11.032 CrossRefGoogle Scholar
  68. Yahia-Kéfi OD, Souissi S, Stefano MD, Yahia MND (2005) Bellerochea horologicalis and Lithodesmioides polymorphavar. Tunisiense var. nov. (Coscinodiscophyceae. Bacillariophyta) in the Bay of Tunis: ultrastructural observations and spatio-temporal distribution. Bot Mar 48:58–72Google Scholar
  69. Zöckler C, Delany S, Barber J (2013) Scoping paper: sustainable coastal zone management in Myanmar. ArcCona Ecological Consultant and Flora Fauna International, Cambridge, p 32Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Maung-Saw-Htoo-Thaw
    • 1
  • Shizuka Ohara
    • 1
  • Kazumi Matsuoka
    • 2
  • Tatsuya Yurimoto
    • 3
  • Shota Higo
    • 1
  • Khin-Ko-Lay
    • 4
  • Win-Kyaing
    • 5
  • Myint-Shwe
    • 4
  • Sein-Thaung
    • 4
  • Yin-Yin-Htay
    • 6
  • Nang-Mya-Han
    • 6
  • Khin-Maung-Cho
    • 6
  • Si–Si-Hla-Bu
    • 6
  • Swe-Thwin
    • 5
  • Kazuhiko Koike
    • 1
    Email author
  1. 1.Graduate School of Biosphere ScienceHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Institute of East China Sea Research, Graduate School of Fisheries Science and Environmental StudiesNagasaki UniversityNagasakiJapan
  3. 3.Japan International Research Center for Agricultural ScienceTsukubaJapan
  4. 4.Department of FisheriesMinistry of Livestock, Fisheries and Rural DevelopmentNaypyitawMyanmar
  5. 5.Myanmar Fishery FederationYangonMyanmar
  6. 6.Myeik UniversityMyeikMyanmar

Personalised recommendations