Journal of Oceanography

, Volume 72, Issue 6, pp 819–836 | Cite as

Seasonal variations in the nitrogen isotopic composition of settling particles at station K2 in the western subarctic North Pacific

  • Yoshihisa Mino
  • Chiho Sukigara
  • Makio C. Honda
  • Hajime Kawakami
  • Kazuhiko Matsumoto
  • Masahide Wakita
  • Minoru Kitamura
  • Tetsuichi Fujiki
  • Kosei Sasaoka
  • Osamu Abe
  • Jan Kaiser
  • Toshiro Saino
Special Section: Original Article K2S1 project

Abstract

Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.

Keywords

Nitrogen isotopes Suspended and settling particles Nitrogen recycling Nitrification Primary productivity Western subarctic North Pacific 

Notes

Acknowledgments

We are grateful to the officers and crew of the R/V Mirai for their support during the cruise and to the participants from Marine Works Japan Ltd. for their on-board analysis and deck works. We also thank Alina Marca, University of East Anglia, for her support of nitrate δ 15N analyses. Thanks to J. I. Goes and H. R. Gomes of Columbia University for their helps to improve this manuscript. We are also grateful to anonymous reviewers, whose comments and suggestions significantly improved the content of this manuscript.

References

  1. Aita MN, Tadokoro K, Ogawa NO, Hyodo F, Ishii R, Smith SL, Saino T, Kishi MJ, Saitoh SI, Wada E (2011) Linear relationship between carbon and nitrogen isotope ratios along simple food chains in marine environments. J Plankton Res 33:1629–1642CrossRefGoogle Scholar
  2. Alldredge AL, Passow U, Logan BE (1993) The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res I 40:1131–1140CrossRefGoogle Scholar
  3. Altabet MA (1988) Variations in nitrogen isotopic composition between sinking and suspended particles: implications for nitrogen cycling and particle transformation in the open ocean. Deep Sea Res 35:535–554CrossRefGoogle Scholar
  4. Altabet MA, Francois R (1994a) Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob al Biogeochem Cycles 8:103–116CrossRefGoogle Scholar
  5. Altabet MA, Francois R (1994b) The use of nitrogen isotopic ratio for reconstruction of past changes in the surface ocean nutrient utilization. In: Zahn R et al (eds) Carbon cycling in the Glacial Ocean: constrains on the ocean’s role in global change. Springer, New York, pp 281–306CrossRefGoogle Scholar
  6. Altabet MA, Small LF (1990) Nitrogen isotopic ratios in fecal pellets produced by marine zooplankton. Geochim Cosmochim Acta 54:155–163CrossRefGoogle Scholar
  7. Altabet MA, Pilskaln C, Thunell R, Pride C, Sigman D, Chavez F, Francois R (1999) The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep Sea Res I 46:655–679CrossRefGoogle Scholar
  8. Bada JL, Schoeninger MJ, Schimmelmann A (1989) Isotopic fractionation during peptide-bond hydrolysis. Geochim Cosmochim Acta 53:3337–3341CrossRefGoogle Scholar
  9. Banse K (1995) Zooplankton-pivotal role in the control of ocean production. ICES J Mar Sci 52:265–277CrossRefGoogle Scholar
  10. Beman LM, Popp BN, Alford SE (2012) Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol Oceanogr 57:711–726CrossRefGoogle Scholar
  11. Brainerd KE, Gregg MC (1995) Surface mixed and mixing layer depths. Deep Sea Res I 9:1521–1543CrossRefGoogle Scholar
  12. Brunelle BG, Sigman DM, Jaccard SL, Keigwin LD, Plessen B, Schettler G, Cook MS, Haug GH (2010) Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat Sci Rev 29:2579–2590CrossRefGoogle Scholar
  13. Buchwald C, Casciotti KL (2013) Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat Geosci 6:308–313CrossRefGoogle Scholar
  14. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda MC, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Mooy BV, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570CrossRefGoogle Scholar
  15. Calvert SE, Nielsen B, Fontugne MR (1992) Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean Sapropels. Nature 359:223–225CrossRefGoogle Scholar
  16. Casciotti KL, McIlvin MR (2007) Isotopic analyses of nitrate and nitrite from reference mixtures and application to Eastern Tropical North Pacific waters. Mar Chem 107:184–201CrossRefGoogle Scholar
  17. Casciotti KL, Sigman DM, Galanter Hastings M, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912CrossRefGoogle Scholar
  18. Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrob J 20:335–353CrossRefGoogle Scholar
  19. Casciotti KL, Trull TW, Glover DM, Davies D (2008) Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen. Deep Sea Res II 55:1661–1672CrossRefGoogle Scholar
  20. Checkley DM, Entzeroth LC (1985) Elemental and isotopic fractionation of carbon and nitrogen by marine, planktonic copepods and implications to the marine nitrogen cycle. J Plankton Res 7:553–568CrossRefGoogle Scholar
  21. Checkley DM, Miller CA (1989) Nitrogen isotope fractionation by oceanic zooplankton. Deep Sea Res I 36:1449–1456CrossRefGoogle Scholar
  22. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  23. Dilling L, Alldredge AL (2000) Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep Sea Res I 47:1227–1245CrossRefGoogle Scholar
  24. Dore JE, Karl DM (1996) Nitrification in the euphotic zone as a source for nitrate, nitrite, and nitrous oxide at Station ALOHA. Limnol Oceanogr 41:1619–1628CrossRefGoogle Scholar
  25. Dore JE, Brum JR, Tupas LM, Karl DM (2002) Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnol Oceanogr 47:1595–1607CrossRefGoogle Scholar
  26. Elskens M, Brion N, Buesseler K, Van Mooy BAS, Boydc P, Dehairs F, Savoyed N, Baeyens W (2008) Primary, new and export production in the NW Pacific subarctic gyre during the vertigo K2 experiments. Deep Sea Res II 55:1594–1604CrossRefGoogle Scholar
  27. Engel A, Passow U (2001) Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption. Mar Ecol Prog Ser 219:1–10CrossRefGoogle Scholar
  28. Engel A, Thoms S, Riebesell U, Rochelle-Newall E, Zondervan I (2004) Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428:929–932CrossRefGoogle Scholar
  29. Evans GT, Parslow JS (1985) A model of annual plankton cycles. Biol Oceanogr 3:327–347Google Scholar
  30. Farrell JW, Pederson TF, Calvert SE, Nielsen B (1995) Glacial-interglacial changes in nutrient utilization in the equatorial Pacific Ocean. Nature 377:514–517CrossRefGoogle Scholar
  31. Fawcett SE, Lomas MW, Casey JR, Ward BB, Sigman DM (2011) Assimilation of upwelled nitrate by small eukaryotes in the Sargasso Sea. Nat Geosci. doi: 10.1038/NGEO1265 Google Scholar
  32. Francois R, Altabet MA, Burkle LH (1992) Glacial to interglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment δ 15N. Paleoceanography 7:589–606CrossRefGoogle Scholar
  33. Francois R, Bacon MP, Altabet MA, Labeyrie LD (1993) Glacial/interglacial changes in sediment rain rate in the S.W. Indian sector of Subantarctic waters as recorded by 230Th, 231Pa, U, and δ 15N. Paleoceanography 8:611–630CrossRefGoogle Scholar
  34. Francois F, Altabet MA, Yu E-F, Sigman DM, Bacon MP, Frank M, Bohrmann G, Bareille G, Labeyrie LD (1997) Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389:929–935CrossRefGoogle Scholar
  35. Fripiat F, Sigman DM, Fawcett SE, Rafter PA, Weigand MA, Tison J-L (2014) New insights into sea ice nitrogen biogeochemical dynamics from the nitrogen isotopes. Glob Biogeochem Cycles 28:115–130CrossRefGoogle Scholar
  36. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182–1190CrossRefGoogle Scholar
  37. Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) Seasonal cycle of phytoplankton community structure and photo-physiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59:887–900CrossRefGoogle Scholar
  38. Goldthwait SA, Carlson CA, Henderson GK, Alldredge AL (2005) Effects of physical fragmentation on remineralization of marine snow. Mar Ecol Prog Ser 305:59–65CrossRefGoogle Scholar
  39. Hernandez-Leon S, Fraga C, Ikeda T (2008) A global estimation of mesozooplankton ammonium excretion in the open ocean. J Plankton Res 30:577–585CrossRefGoogle Scholar
  40. Hollibaugh JT, Azam F (1983) Microbial degradation of dissolved proteins in seawater. Limnol Oceanogr 28:1104–1116CrossRefGoogle Scholar
  41. Honda MC, Watanabe S (2010) Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys Res Lett 37:L02605. doi: 10.1029/2009GL041521 CrossRefGoogle Scholar
  42. Honda MC, Imai K, Nojiri Y, Hoshi F, Sugawara T, Kusakabe M (2002) The biological pump in the northwestern North Pacific based on fluxes and major components of particulate matter obtained by sediment trap experiments (1997–2000). Deep Sea Res II 49:5595–5625CrossRefGoogle Scholar
  43. Honda MC, Kawakami H, Sasaoka K, Watanabe S, Dickey T (2006) Quick transport of primary produced organic carbon to the ocean interior. Geophys Res Lett 33:L16603. doi: 10.1029/2006GL026466 CrossRefGoogle Scholar
  44. Honda MC, Sasaoka K, Kawakami H, Matsumoto K, Watanabe S, Dickey T (2009) Application of underwater optical data to estimation of primary productivity. Deep Sea Res I 56:2281–2292CrossRefGoogle Scholar
  45. Honda MC, Kawakami H, Watanabe S, Saino T (2013) Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean. Biogeosciences 10:3525–3534CrossRefGoogle Scholar
  46. Honda MC, Kawakami H, Matsumoto K, Wakita M, Fujiki T, Mino Y, Sukigara C, Kobari T, Uchimiya M, Kaneko R, Saino T (2015) Comparison of sinking particles in the upper 200 m between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiments. J Oceanogr. doi: 10.1007/s10872-015-0280-x Google Scholar
  47. Honda MC, Matsumoto K, Fujiki T, Siswanto E, Kawakami H, Wakita M, Mino Y, Sukigara C, Kitamura M, Sasai Y, Smith SL, Hashioka T, Yoshikawa C, Kimoto K, Watanabe S, Kobari T, Nagata T, Hamasaki K, Kaneko R, Uchimiya M, Fukuda H, Abe O (2016) An overview of the K2S1 project. J Oceanogr (submitted) Google Scholar
  48. Jawed M (1973) Ammonia excretion by zooplankton and its significance to primary productivity during summer. Mar Biol 23:115–120CrossRefGoogle Scholar
  49. Kaiser J, Hastings M, Houlton B, Röckmann T, Sigman D (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79:599–607CrossRefGoogle Scholar
  50. Karl DM, Knauer GA, Martin JH (1988) Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332:438–441CrossRefGoogle Scholar
  51. Karsh KL, Trull TW, Lourey MJ, Sigman DM (2003) Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron RElease Experiment (SOIREE). Lomnol Oceanogr 48:1058–1068CrossRefGoogle Scholar
  52. Kawakami H, Honda MC (2007) Time-series observation of POC fluxes estimated from 234Th in the northwestern North Pacific. Deep Sea Res I 54:1071–1090CrossRefGoogle Scholar
  53. Kawakami H, Honda MC, Watanabe S, Saino T (2014) Time-series observation of 210Po and 210Pb radioactivity in the western North Pacific. J Radioanal Nucl Chem 301:461–468CrossRefGoogle Scholar
  54. Kawakami H, Honda MC, Matsumoto K, Wakita M, Kitamura M, Fujiki T, Watanabe S (2015) POC fluxes estimated from 234Th in late spring—early summer in the western subarctic North Pacific. J Oceanogr 71:311–324CrossRefGoogle Scholar
  55. Kirchman DL (1994) The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol 28:255–271CrossRefGoogle Scholar
  56. Kitamura M, Kobari T, Honda MC, Matsumoto K, Sasaoka K, Nakamura R, Tanabe K (2016) Seasonal changes in the mesozooplankton biomass and community structure in subarctic and subtropical time-series stations in the western North Pacific. J Oceanogr. doi: 10.1007/s10872-015-0347-8 Google Scholar
  57. Knapp AN, Sigman DM, Lipschultz F, Kustka AB, Capone DG (2011) Interbasin isotopic correspondence between upper-ocean bulk DON and subsurface nitrate and its implications for marine nitrogen cycling. Glob Biogeochem Cycles 25:GB4004. doi: 10.1029/2010GB003878 CrossRefGoogle Scholar
  58. Knapp AN, Sigman DM, Kustka AB, Sañudo-Wilhelmy SA, Capone DG (2012) The distinct nitrogen isotopic compositions of low and high molecular weight marine DON. Mar Chem 136–137:24–33CrossRefGoogle Scholar
  59. Kobari T, Shinada A, Tsuda A (2003) Functional roles of interzonal migrating mesozooplankton in the western subarctic Pacific. Prog Oceanogr 57:279–298CrossRefGoogle Scholar
  60. Kobari T, Kitamura M, Minowa M, Isami H, Akamatsu H, Kawakami H, Matsumoto K, Wakita M, Honda MC (2013) Impacts of the wintertime mesozooplankton community to downward carbon flux in the subarctic and subtropical Pacific Oceans. Deep Sea Res I 81:78–88CrossRefGoogle Scholar
  61. Kobari T, Nakamura R, Unno K, Kitamura M, Tanabe K, Nagafuku H, Niibo A, Kawakami H, Matsumoto K, Honda MC (2016) Seasonal variability in carbon demand and flux by mesozooplankton communities at subarctic and subtropical sites in the western North Pacific Ocean. J Oceanogr. doi: 10.1007/s10872-015-0348-7 Google Scholar
  62. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546CrossRefGoogle Scholar
  63. Koppelmann R, Weikert H, Halsband-Lenk C, Jennerjahn T (2004) Mesozooplankton community respiration and its relation to particle flux in the oligotrophic eastern Mediterranean. Glob Biogeochem Cycles 18:GB1038. doi: 10.1029/2003GB002121 CrossRefGoogle Scholar
  64. Lourey MJ, Trull TW, Sigman DM (2003) Sensitivity of δ15N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean. Glob Biogeochem Cycles 17(3):1081. doi: 10.1029/2002GB001973 CrossRefGoogle Scholar
  65. Mackas D, Tsuda A (1999) Mesozooplankton in the eastern and western subarctic Pacific: community structure, seasonal life histories, and interannual variability. Prog Oceanogr 43:335–364CrossRefGoogle Scholar
  66. Macko SA, Estep MLF (1984) Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org Geochem 6:787–790CrossRefGoogle Scholar
  67. Mari X, Beauvais S, Lemee R, Pedrotti ML (2001) Non-Redfield C:N ratio of transparent exopolymeric particles in the northwestern Mediterranean Sea. Limnol Oceanogr 46:1831–1836CrossRefGoogle Scholar
  68. Martin JH, Knauer GG, Karl DM, Broenkow WW (1987) VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res 34:267–285CrossRefGoogle Scholar
  69. Matsumoto K, Honda MC, Sasaoka K, Wakita M, Kawakami H, Watanabe S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res Oceans 119:6523–6534CrossRefGoogle Scholar
  70. Matsumoto K, Abe O, Fujiki T, Sukigara C, Mino Y (2016) Primary productivity at the time-series stations in the northwestern Pacific Ocean: is the subtropical station unproductive? J Oceanogr. doi: 10.1007/s10872-016-0354-4 Google Scholar
  71. Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ 15N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  72. Mino Y, Saino T, Suzuki K, Maranon E (2002) Isotopic composition of suspended particulate nitrogen (δ 15Nsus) in surface waters of the Atlantic Ocean from 50°N to 50°S. Glob Biogeochem Cycles 16(4):1059. doi: 10.1029/2001GB001635 CrossRefGoogle Scholar
  73. Miyake Y, Wada E (1967) The abundance ratio of 15N/14N in marine environments. Rec Oceanogr Works Jpn 9:37–53Google Scholar
  74. Möbius J (2013) Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochim Cosmochim Acta 105:422–432CrossRefGoogle Scholar
  75. Montoya JP, Horrigan SG, McCarthy JJ (1991) Rapid, storm-induced changes in the natural abundance of 15 N in a planktonic ecosystem, Chesapeake Bay, USA. Geochim Cosmochim Acta 55:3627–3638CrossRefGoogle Scholar
  76. Obayashi Y, Tanoue E (2002) Growth and mortality rates of phytoplankton in the northwestern North Pacific estimated by the dilution method and HPLC pigment analysis. J Exp Mar Biol Ecol 280:33–52CrossRefGoogle Scholar
  77. Olson R (1981) Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J Mar Res 39:227–238Google Scholar
  78. Pantoja S, Repeta DJ, Sachs JP, Sigman DM (2002) Stable isotope constraints on the nitrogen cycle of the Mediterranean Sea water column. Deep Sea Res I 49:1609–1621CrossRefGoogle Scholar
  79. Passow U, Alldredge AL, Logan BE (1994) The role of particulate carbohydrate exudates in the flocculation of diatom blooms. Deep Sea Res I 41:335–357CrossRefGoogle Scholar
  80. Passow U, Shipe RF, Murray A, Pak DK, Brzezinski MA, Alldredge AL (2001) The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Cont Shelf Res 21:327–346CrossRefGoogle Scholar
  81. Pennock JR, Velinsky DJ, Ludlam JM, Sharp JH, Fogel ML (1996) Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: implications for δ 15N dynamics under bloom conditions. Limnol Oceanogr 41:451–459CrossRefGoogle Scholar
  82. Rau GH, Sullivan CW, Gordon LI (1991) δ 13C and δ 15N variations in Weddell Sea particulate organic matter. Mar Chem 35:355–369CrossRefGoogle Scholar
  83. Saino T, Hattori A (1980) 15N natural abundance in oceanic suspended particulate matter. Nature 283:752–754CrossRefGoogle Scholar
  84. Saino T, Hattori A (1985) Variation of 15N natural abundance of suspended organic matter in shallow oceanic water. In: Sigleo AC, Hattori A (eds) Marine and estuarine geochemistry. A. F. Lewis, New York, pp 1–13Google Scholar
  85. Saito H, Suzuki K, Hinuma A, Ota T, Fukami K, Kiyosawa H, Saino T, Tsuda A (2005) Responses of microzooplankton to in situ iron fertilization in the western subarctic Pacific (SEEDS). Prog Oceanogr 64:223–236CrossRefGoogle Scholar
  86. Santoro AE, Sakamoto CM, Smith JM, Plant JN, Gehman AL, Worden AZ, Johnson KS, Francis CA, Casciotti KL (2013) Measurements of nitrite production in and around the primary nitrite maximum in the central California Current. Biogeosci 10:7395–7410CrossRefGoogle Scholar
  87. Sasai Y, Yoshikawa C, Smith SL, Hashioka T, Matsumoto K, Wakita M, Sasaoka K, Honda MC (2016) Coupled 1-D physical–biological model study of phytoplankton production at two contrasting time-series stations in the western North Pacific. J Oceanogr. doi: 10.1007/s10872-015-0341-1 Google Scholar
  88. Sasakawa M, Ooki A, Uematsu M (2003) Aerosol size distribution during sea fog and its scavenge process of chemical substances over the northwestern North Pacific. J Geophys Res. doi: 10.1029/2002JD002329 Google Scholar
  89. Shiozaki T, Furuya K, Kodama T, Kitajima S, Takeda S, Takemura T, Kanda J (2010) New estimation of N2 fixation in the western and central Pacific Ocean and its marginal seas. Glob Biogeochem Cycles 24:GB1015. doi: 10.1029/2009GB003620 CrossRefGoogle Scholar
  90. Sigman DM, Altabet MA, Michener R, McCorkle DC, Fry B, Holmes RM (1997) Natural abundance-level measurement of the nitrogen isotopic composition of oceanic nitrate: an adaptation of the ammonia diffusion method. Mar Chem 57:227–242CrossRefGoogle Scholar
  91. Sigman DM, DiFiore PJ, Hain MP, Deutsch C, Wang Y, Karl DM, Knapp AN, Lehmann MF, Pantoja S (2009) The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen. Deep Sea Res I 56:1419–1439CrossRefGoogle Scholar
  92. Silfer JA, Engel MH, Macko SA (1992) Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: experimental evidence and geochemical implications. Chem Geol 101:211–221Google Scholar
  93. Smith JM, Chavez FP, Francis CA (2014) Ammonium uptake by phytoplankton regulates nitrification in the sunlit ocean. PLoS One 9:e108173CrossRefGoogle Scholar
  94. Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM (2008) Microbial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr 53:1327–1338CrossRefGoogle Scholar
  95. Stepanauskas R, Edling H, Tranvik LJ (1999) Differential dissolved organic nitrogen availability and bacterial aminopeptidase activity in limnic and marine waters. Microb Ecol 38:264–272CrossRefGoogle Scholar
  96. Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3–22CrossRefGoogle Scholar
  97. Tanaka T, Saino T (2002) Modified method for the analysis of nitrogen isotopic composition of oceanic nitrate at low concentration. J Oceanogr 58:539–546CrossRefGoogle Scholar
  98. Taniguchi A (1973) Phytoplankton-zooplankton relationships in the western Pacific Ocean and adjacent seas. Mar Biol 21:115–121CrossRefGoogle Scholar
  99. Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ 15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813CrossRefGoogle Scholar
  100. Thunell RC, Sigman DM, Muller-Karger F, Astor Y, Varela R (2004) Nitrogen isotope dynamics of the Cariaco Basin, Venezuela. Glob Biogeochem Cycles. doi: 10.1029/2003GB002185 Google Scholar
  101. Treibergs LA, Fawcett SE, Lomas MW, Sigman DM (2014) Nitrogen isotopic response of prokaryotic and eukaryotic phytoplankton to nitrate availability in Sargasso Sea surface waters. Limnol Oceanogr 59:972–985CrossRefGoogle Scholar
  102. Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kubo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugawa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science 300:958–961CrossRefGoogle Scholar
  103. Uchimiya M, Ogawa H, Nagata T (2015) Effects of temperature elevation and glucose addition on prokaryotic production and respiration in the mesopelagic layer of the western North Pacific. J Oceanogr. doi: 10.1007/s10872-015-0294-4 Google Scholar
  104. Uematsu M, Duce RA, Prospero JM, Chen L, Merrill JT, McDonald RL (1983) Transport of mineral aerosol from Asia over the North Pacific Ocean. J Geophys Res 88:5343–5352CrossRefGoogle Scholar
  105. Voss M, Altabet MA, Bodungen BV (1996) δ15N in sedimenting particles as indicator of euphotic-zone processes. Deep Sea Res 43:33–47CrossRefGoogle Scholar
  106. Wada E, Hattori A (1991) Nitrogen in the sea: forms, abundances, and rate processes. CRC Press, Boca Raton, p 208Google Scholar
  107. Wankel SD, Kendall C, Pennington JT, Chavez FP, Paytan A (2007) Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: observations from Monterey Bay, California. Glob Biogeochem Cycles. doi: 10.1029/2006GB002723GB1081 Google Scholar
  108. Wakita M, Honda MC, Matsumoto K, Fujiki T, Kawakami H, Yasunaka S, Sasai Y, Sukigara C, Uchimiya M, Kitamura M, Kobari T, Mino Y, Nagano A, Watanabe S, Saino T (2016) Biological organic carbon export estimated from the annual carbon budget observed in the surface waters of the western subarctic and subtropical North Pacific Ocean from 2004 to 2013. J Oceanogr. doi: 10.1007/s10872-016-0379-8 Google Scholar
  109. Ward BB (2005) Temporal variability in nitrification rates and related biogeochemical factors in Monterey Bay, California, USA. Mar Ecol Prog Ser 292:97–109CrossRefGoogle Scholar
  110. Ward BB, Carlucci AF (1985) Marine ammonia-oxidizing and nitrite-oxidizing bacteria-serological diversity determined by immunofluorescence in culture and in the environment. Appl Environ Microbiol 50:194–201Google Scholar
  111. Ward BB, Olson RJ, Perry MJ (1982) Microbial nitrification rates in the primary nitrite maximum off southern California. Deep Sea Res I 29:247–255CrossRefGoogle Scholar
  112. Waser NAD, Harrison PJ, Nielsen B, Calvert HE (1998) Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium and urea by a marine diatom. Limnol Oceanogr 43:215–224CrossRefGoogle Scholar
  113. Wilson SE, Steinberg DK, Buesseler KO (2008) Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep Sea Res II 55:1636–1647CrossRefGoogle Scholar
  114. Wu J, Calvert SE, Wong CS (1997) Nitrogen isotope variations in the subarctic northeast Pacific: relationships to nitrate utilization and trophic structure. Deep Sea Res I 44:287–314CrossRefGoogle Scholar
  115. Wu J, Calvert SE, Wong CS, Whitney FA (1999) Carbon and nitrogen isotopic composition of sedimenting particulate material at Station Papa in the subarctic northeast Pacific. Deep Sea Res II 46:2793–2832CrossRefGoogle Scholar
  116. Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Furusawa K, Suzuki S, Ishizaka J, Ikeda T, Takahashi MM (2002) Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep Sea Res II 49:5513–5529CrossRefGoogle Scholar
  117. Yasunaka S, Nojiri Y, Nakaoka S, Ono T, Whitney FA, Telszewski M (2014) Mapping of sea surface nutrients in the North Pacific: basinwide distribution and seasonal to interannual variability. J Geophys Res Oceans. doi: 10.1002/2014JC010318 Google Scholar
  118. Yoshikawa C, Yamanaka Y, Nakatsuka T (2005) An ecosystem model including nitrogen isotopes: perspectives on a study of the marine nitrogen cycle. J Oceanogr 61:921–942CrossRefGoogle Scholar
  119. Yoshikawa C, Abe H, Aita MN, Breider F, Kuzunuki K, Toyoda S, Ogawa NO, Suga H, Ohkouchu N, Danielache SO, Wakita M, Honda MC, Yoshida N (2015) Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model. J Oceanogr. doi: 10.1007/s10872-015-0308-2 Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Yoshihisa Mino
    • 1
  • Chiho Sukigara
    • 3
  • Makio C. Honda
    • 2
  • Hajime Kawakami
    • 2
  • Kazuhiko Matsumoto
    • 2
  • Masahide Wakita
    • 2
  • Minoru Kitamura
    • 2
  • Tetsuichi Fujiki
    • 2
  • Kosei Sasaoka
    • 2
  • Osamu Abe
    • 3
  • Jan Kaiser
    • 4
  • Toshiro Saino
    • 2
  1. 1.Institute for Space-Earth Environmental ResearchNagoya UniversityNagoyaJapan
  2. 2.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  4. 4.Centre for Ocean and Atmospheric Sciences, School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations