Advertisement

Journal of Oceanography

, Volume 72, Issue 3, pp 465–477 | Cite as

Meridional and seasonal footprints of the Pacific Decadal Oscillation on phytoplankton biomass in the northwestern Pacific Ocean

  • Eko Siswanto
  • Makio C. Honda
  • Yoshikazu Sasai
  • Kosei Sasaoka
  • Toshiro Saino
Special Section: Original Article K2S1 project

Abstract

We used 16 years of multiplatform-derived biophysical data to reveal the footprint of the Pacific Decadal Oscillation (PDO) on the phytoplankton biomass of the northwestern Pacific Ocean in terms of chlorophyll a concentration (Chl), and to discern the probable factors causing the observed footprint. There were meridional differences in the response of phytoplankton to changes of environmental conditions associated with deepening of the mixed layer during the positive phase of the PDO. In general, deepening of the mixed layer increased phytoplankton biomass at low latitudes (increase of Chl due to increase of nutrient supply), but lowered phytoplankton at high latitudes (decrease of Chl due to reduction of average irradiance and temperature in the mixed layer). The areas where Chl increased or decreased changed meridionally and seasonally in accord with regulation of nutrient and light/temperature limitation by changes of mixed layer depth. The observed PDO footprint on Chl in the northwestern Pacific is likely superimposed on the high-frequency component of the PDO excited by El Niño/Southern Oscillation interannual variability. On a decadal time scale, however, Chl in the northwestern Pacific were more strongly associated with the recently discovered North Pacific Gyre Oscillation.

Keywords

Remote sensing Ocean color Chlorophyll a Aleutian Low Climate changes 

Notes

Acknowledgments

This work was partially supported by the Asia–Pacific Network for Global Change Research (APN, CAF2015-RR11-NMY-Siswanto). We acknowledge the Ocean Biology Processing Group (OBPG) for distributing the SeaWiFS/MODIS Chl and SST data. We thank the Physical Oceanography-Distributed Active Archive Center of the Jet Propulsion Laboratory, NCEP-Global Ocean Data Assimilation System (GODAS), and JAMSTEC Argo float team for processing and distributing the SST, GODAS MLD, and Argo float-based MLD data, respectively. We are grateful to two reviewers whose comments substantially improved the paper.

References

  1. Alexander MA (2010) Climate Dynamics: Why Does Climate Vary? In: Sun DZ, Byran F (eds) Extratropical air-sea interaction, sea surface temperature variability, and the Pacific Decadal Oscillation. American Geophysical Union, Washington DC. doi: 10.1029/2008GM000794 CrossRefGoogle Scholar
  2. Alvarez-Fernandez S, Riegman R (2014) Chlorophyll in North Sea coastal and offshore waters does not reflect long-term trends of phytoplankton biomass. J Sea Res 91:35–44. doi: 10.1016/j.seares.2014.04.005 CrossRefGoogle Scholar
  3. Alvera-Azcárate A, Barth A, Beckers JM (2005) Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Model 9(4):325–346. doi: 10.1016/j.ocemod.2004.08.001 CrossRefGoogle Scholar
  4. Ashok K, Yamagata T (2009) Climate change: the El Niño with a difference. Nature 461:481–484. doi: 10.1038/461481a CrossRefGoogle Scholar
  5. Beckers JM, Rixen M (2003) EOF calculation and data filling from incomplete oceanographic datasets. J Atmos Ocean Tech 20(12):1839–1856. doi: 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2 CrossRefGoogle Scholar
  6. Ceballos LI, Di Lorenzo E, Hoyos CD et al (2009) North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J Climate 22:5163–5174. doi: 10.1175/2009JCLI2848.1 CrossRefGoogle Scholar
  7. Chiba S, Aita MN, Tadokoro K et al (2008) From climate regime shift to lower-tropic level phenology: synthesis of recent progress in retrospective studies of the western North Pacific. Prog Oceanogr 77(2–3):112–126. doi: 10.1016/j.pocean.2008.03.004 CrossRefGoogle Scholar
  8. Cohen J, Barlow M, Saito K (2009) Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter. J Climate 22(16):4418–4426. doi: 10.1175/2009JCLI2931.1 CrossRefGoogle Scholar
  9. Di Lorenzo E, Combes V, Keister JE et al (2013) Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanogr 26(4):68–81. doi: 10.5670/oceanog.2013.76 CrossRefGoogle Scholar
  10. Fujiki T, Matsumoto K, Mino Y et al (2014) Seasonal cycle of phytoplankton community structure and photophysiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900. doi: 10.4319/lo.2014.59.3.0887 CrossRefGoogle Scholar
  11. Goes JI, Gomes HDR, Limsakul A et al (2004) The influence of large-scale environmental changes on carbon export in the North Pacific Ocean using satellite and shipboard data. Deep-Sea Res II 51(1–3):247–279. doi: 10.1016/j.dsr2.2003.06.004 CrossRefGoogle Scholar
  12. Hayashi M, Furuya K, Hattori H (2001) Spatial heterogeneity in distributions of chlorophyll a derivatives in the subarctic North Pacific during summer. J Oceanogr 57(3):323–331. doi: 10.1023/A:1012486629884 CrossRefGoogle Scholar
  13. Honda MC, Watanabe S (2010) Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys Res Lett 37(2):L02605. doi: 10.1029/2009GL041521 CrossRefGoogle Scholar
  14. Honda MC, Kawakami H, Matsumoto K et al (2016) Comparison of sinking particles in the upper 200 m between subarctic station K2 and subtropical station S1 based on drifting trap experiment. J Oceanogr. doi: 10.1007/s10872-015-0280-x (in press) Google Scholar
  15. Irwin AJ, Finkel ZV (2008) Mining a sea of data: deducing the environmental controls of ocean chlorophyll. PLoS One 3(11):e3836. doi: 10.1371/journal.pone.0003836 CrossRefGoogle Scholar
  16. Karl DM, Letelier R, Hebel D et al (1995) Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991-1992 El Niño. Nature 373:230–234. doi: 10.1038/373230a0 CrossRefGoogle Scholar
  17. Kruskopf M, Flynn KJ (2006) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169(3):525–536. doi: 10.1111/j.1469-8137.2005.01601.x CrossRefGoogle Scholar
  18. Li Y, He R (2014) Spatial and temporal variability of SST and ocean color in the Gulf of Maine based on cloud-free SST and chlorophyll reconstructions in 2003-2012. Remote Sens Environ 144:98–108. doi: 10.1016/j.rse.2014.01.019 CrossRefGoogle Scholar
  19. Limsakul A, Saino T, Goes JI et al (2002) Seasonal variability in the lower trophic level environments of the western subtropical Pacific and Oyashio Waters–a retrospective study. Deep-Sea Res II 49(24–25):5487–5512. doi: 10.1016/S0967-0645(02)00208-4 CrossRefGoogle Scholar
  20. Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58(1):35–44. doi: 10.1023/A:1015820616384 CrossRefGoogle Scholar
  21. Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 CrossRefGoogle Scholar
  22. Maranon E, Cermeno P, Huete-Ortega M et al (2014) Resource supply overrides temperatures as a controlling factor of marine phytoplankton growth. PLoS One 9(6):e99312. doi: 10.1371/journal.pone.0099312 CrossRefGoogle Scholar
  23. Matsumoto K, Honda MC, Sasaoka K et al (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res 119(9):6523–6534. doi: 10.1002/2014JC009982 CrossRefGoogle Scholar
  24. Nathans LL, Oswald FL, Nimon K (2012) Interpreting multiple linear regression: a guidebook of variable importance, Prac Assess Res Eval 17(9). http://pareonline.net/getvn.asp?v=17&n=9. Accessed 17 Feb 2016
  25. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Climate 16(23):3853–3857. doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 CrossRefGoogle Scholar
  26. Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52(2):886–895. doi: 10.4319/lo.2007.52.2.0886 CrossRefGoogle Scholar
  27. Sasai Y, Yoshikawa C, Smith SL et al (2016) Coupled 1-D physical-biological model study of phytoplankton production at two contrasting time-series stations in the western North Pacific. J Oceanogr. doi: 10.1007/s10872-015-0341-1 (in press) Google Scholar
  28. Sasaoka K, Saitoh S, Asanuma I et al (2002) Temporal and spatial variability of chlorophyll-a in the western subarctic Pacific determined from satellite and ship observations from 1997 to 1999. Deep-Sea Res II 49(24–25):5557–5576. doi: 10.1016/S0967-0645(02)00206-0 CrossRefGoogle Scholar
  29. Schneider H, Cornuelle BD (2005) The forcing of the Pacific Decadal Oscillation. J Climate 18(21):4355–4373. doi: 10.1175/JCLI3527.1 CrossRefGoogle Scholar
  30. Shiomoto A, Ishida Y (1998) Primary production and chlorophyll a in the northwestern Pacific Ocean in summer. J Geophys Res 103(C11):24651–24661. doi: 10.1029/98JC01538 CrossRefGoogle Scholar
  31. Siswanto E, Matsumoto K, Fujiki T et al (2015) Reappraisal of meridional differences of factors controlling phytoplankton biomass and initial increase preceding seasonal bloom in the northwestern Pacific Ocean. Remote Sens Environ 159:44–56. doi: 10.1016/j.rse.2014.11.028 CrossRefGoogle Scholar
  32. Siswanto E, Honda MC, Matsumoto K et al (2016) Sixteen-year phytoplankton biomass trends in the northwestern Pacific Ocean observed by the SeaWiFS and MODIS ocean color sensors. J Oceanogr. doi: 10.1007/s10872-016-0357-1 (in press) Google Scholar
  33. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons int Explor Mer 18(3):287–295. doi: 10.1093/icesjms/18.3.287 CrossRefGoogle Scholar
  34. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dynam 9:303–319. doi: 10.1007/BF00204745 CrossRefGoogle Scholar
  35. Wang H, Kumar A, Wang W et al (2012) Seasonality of the Pacific Decadal Oscillation. J Clim 25(1):25–38. doi: 10.1175/2011JCLI4092.1 CrossRefGoogle Scholar
  36. Yeh SW, Kug JS, Dewitte B et al (2009) El Niño in changing climate. Nature 461:511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  37. Yoshie N, Yamanaka Y, Kishi MJ et al (2003) One dimensional ecosystem model simulation of the effects of vertical dilution by the winter mixing on the spring diatom bloom. J Oceanogr 59(5):563–571. doi: 10.1023/B:JOCE.0000009586.02554.d3 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Eko Siswanto
    • 1
    • 3
  • Makio C. Honda
    • 2
  • Yoshikazu Sasai
    • 3
  • Kosei Sasaoka
    • 4
  • Toshiro Saino
    • 5
  1. 1.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  4. 4.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  5. 5.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations