Journal of Oceanography

, Volume 72, Issue 3, pp 479–489 | Cite as

Sixteen-year phytoplankton biomass trends in the northwestern Pacific Ocean observed by the SeaWiFS and MODIS ocean color sensors

  • Eko Siswanto
  • Makio C. Honda
  • Kazuhiko Matsumoto
  • Yoshikazu Sasai
  • Tetsuichi Fujiki
  • Kosei Sasaoka
  • Toshiro Saino
Special Section: Original Article K2S1 project


Using multisensor/platform biophysical data collected from 1997 to 2013, we investigated trends of the concentrations of phytoplankton biomass (Chl) in the northwestern Pacific Ocean (NWPO) and the probable responsible factors. The trend of rising sea surface temperature (SST) was the main factor maintaining phytoplankton positive net growth and resulted in a trend of increasing Chl at high latitudes in all seasons. At latitudes of 36–46°N, east of 160°E, the trend of rising SST was accompanied by a trend of declining Chl, markedly in spring and fall, which could be ascribed to strengthened stratification. The trends of environmental variables in the Oyashio area have modified conditions in a way detrimental to phytoplankton growth, the result being a trend of declining Chl from spring to fall. Chl south of roughly 36°N exhibited different trends in different seasons because of the different trends of vertical stratification. Whereas the observed 16-year Chl trends were not primarily influenced by interannual climate variability, to some degree they were likely modified by decadal variability associated with a weakened Aleutian Low pressure. This work prompts further comprehensive studies to investigate the probable ecological consequences of the observed Chl trend for high-trophic-level marine organisms in the NWPO.


Remote sensing Ocean color Chlorophyll-a Phytoplankton growth Light/nutrient limitation Climate change 



This work was partially supported by the Asia–Pacific Network for Global Change Research (APN, CAF2015-RR11-NMY-Siswanto). We thank the Ocean Biology Processing Group (code 614.2) at the Goddard Space Flight Center, Greenbelt, Maryland, USA, for the production and distribution of their ocean color data. We also acknowledge the Remote Sensing Systems and Physical Oceanography Distributed Active Archive Center (PO.DAAC), Jet Propulsion Laboratory for processing and distributing SST and microwave-sensor-retrieved satellite data, respectively. We are grateful to three reviewers whose helpful comments, suggestions, and instructions substantially improved the paper.


  1. Aita MN, Yamanaka Y, Kishi MJ (2007) Interdecadal variation of the lower trophic ecosystem in the northern Pacific between 1948 and 2002, in a 3-D implementation of the NEMURO model. Ecol Model 202(1–2):81–94. doi: 10.1016/j.ecolmodel.2006.07.045 CrossRefGoogle Scholar
  2. Alvera-Azcárate A, Barth A, Beckers JM (2005) Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Model 9(4):325–346. doi: 10.1016/j.ocemod.2004.08.001 CrossRefGoogle Scholar
  3. Beckers JM, Rixen M (2003) EOF calculation and data filling from incomplete oceanographic datasets. J Atmos Ocean Tech 20(12):1839–1856. doi: 10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2 CrossRefGoogle Scholar
  4. Behrenfeld MJ (2010) Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91(4):977–989. doi: 10.1890/09-1207.1 CrossRefGoogle Scholar
  5. Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 42(1):1–20. doi: 10.4319/lo.1997.42.1.0001 CrossRefGoogle Scholar
  6. Behrenfeld MJ, O’Malley RT, Siegel DA et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755. doi: 10.1038/nature05317 CrossRefGoogle Scholar
  7. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. doi: 10.1038/nature09268 CrossRefGoogle Scholar
  8. Chiba S, Aita MN, Tadokoro K et al (2008) From climate regime shifts to lower-trophic level phenology: Synthesis of recent progress in retrospective studies of the western North Pacific. Prog Oceanogr 77(2–3):112–126. doi: 10.1016/j.pocean.2008.03.004 CrossRefGoogle Scholar
  9. Cohen J, Barlow M, Saito K (2009) Decadal fluctuations in planetary wave forcing modulate global warming in late boreal winter. J Climate 22:4418–4426. doi: 10.1175/2009JCLI2931.1 CrossRefGoogle Scholar
  10. Doney SC (2006) Oceanography: Plankton in a warmer world. Nature 444:695–696. doi: 10.1038/444695a CrossRefGoogle Scholar
  11. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70(4):1063–1085Google Scholar
  12. Fujiki T, Matsumoto K, Mino Y et al (2014) Seasonal cycle of phytoplankton community structure and photophysiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900. doi: 10.4319/lo.2014.59.3.0887 CrossRefGoogle Scholar
  13. Goes JI, Saino T, Oaku H et al (2000) Basin scale estimates of sea surface nitrate and new production from remotely sea surface temperature and chlorophyll. Geophys Res Lett 27(9):1263–1266. doi: 10.1029/1999GL002353 CrossRefGoogle Scholar
  14. Goes JI, Gomes HR, Limsakul A et al (2003) The influence of large-scale environmental changes on carbon export in the North Pacific Ocean using satellite and shipboard data. Deep-Sea Res II 51(1–3):247–279. doi: 10.1016/j.dsr2.2003.06.004 Google Scholar
  15. Gregg WW, Casey NW, McClain CR (2005) Recent trends in global ocean chlorophyll. Geophys Res Lett 32:L03606. doi: 10.1029/2004GL021808 Google Scholar
  16. Hanawa K, Mitsudera H (1986) Variation of water system distribution in the Sanriku Coastal Area. J Oceanogr 42(6):435–446. doi: 10.1007/BF02110194 Google Scholar
  17. Honda MC Matsumoto K, Fuijiki T et al (2016) Ecosystem and material cycle changes caused by climate change estimated from time-series observations in the western North Pacific: an overview of the K2S1 project. J Oceanogr (this volume) Google Scholar
  18. Irwin AJ, Finkel ZV (2008) Mining a sea of data: deduction the environmental controls of ocean chlorophyll. PLoS ONE 3(11):e3836. doi: 10.1371/journal.pone.0003836 CrossRefGoogle Scholar
  19. Ito SI, Okunushi T, Kishi MJ et al (2013) Modelling ecological responses of Pacific saury (Cololabis saira) to future climate change and its uncertainty. ICES J Mar Sci 70(5):980–990. doi: 10.1093/icesjms/fst089 CrossRefGoogle Scholar
  20. Kahru M, Kudela RM, Manzano-Sarabia M et al (2012) Trends in the surface chlorophyll of the California current: merging data from multiple ocean color satellite. Deep Sea Res II 77–80:89–98. doi: 10.1016/j.dsr2.2012.04.007 CrossRefGoogle Scholar
  21. Kudo I, Noiri Y, Nishioka J et al (2006) Phytoplankton community response to Fe and temperature gradients in the NE (SERIES) and NW (SEEDS) subarctic Pacific Ocean. Deep Sea Res II 53(20–22):2201–2213. doi: 10.1016/j.dsr2.2006.05.033 CrossRefGoogle Scholar
  22. Li Y, He R (2014) Spatial and temporal variability of SST and ocean color in the Gulf of Maine based on cloud-free SST and chlorophyll reconstructions in 2003–2012. Remote Sens Environ 144:98–108. doi: 10.1016/j.rse.2014.01.019 CrossRefGoogle Scholar
  23. Liu H, Suzuki K, Saito H (2004) Community structure and dynamics of phytoplankton in the western subarctic Pacific Ocean: a synthesis. J Oceanogr 60(1):119–137. doi: 10.1023/B:JOCE.0000038322.79644.36 CrossRefGoogle Scholar
  24. Marañón E, Cermeño P, Huete-Ortega M et al (2014) Resource supply overrides temperatures as a controlling factor of marine phytoplankton growth. PLoS ONE 9(6):e99312. doi: 10.1371/journal.pone.0099312 CrossRefGoogle Scholar
  25. Matsumoto K, Honda MC, Sasaoka K et al (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within mixed layer. J Geophys Res-Oceans 119(9):6523–6534. doi: 10.1002/2014JC009982 CrossRefGoogle Scholar
  26. McClain CR, Signorini SR, Christian JR (2004) Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res 51(1–3):281–301. doi: 10.1016/j.dsr2.2003.08.002 CrossRefGoogle Scholar
  27. O’Reilly JE, Maritorena S, Mitchell G et al (1998) Ocean color chlorophyll algorithm for SeaWiFS. J Geophys Res-Oceans 103(C11):24937–24953. doi: 10.1029/98JC02160 CrossRefGoogle Scholar
  28. Obata A, Ishizaka J, Endoh M (1996) Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J Geophys Res-Oceans 101(C9):20657–20667. doi: 10.1029/96JC01734 CrossRefGoogle Scholar
  29. Peeters F, Straile D, Lorke A et al (2007) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob Change Biol 13(9):1898–1909. doi: 10.1111/j.1365-2486.2007.01412.x CrossRefGoogle Scholar
  30. Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35(3):L03618. doi: 10.1029/2007GL031745 CrossRefGoogle Scholar
  31. Saito H, Tsuda A, Kasai H (2002) Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res II 49(24–25):5463–5486. doi: 10.1016/S0967-0645(02)00204-7 CrossRefGoogle Scholar
  32. Sakurai Y (2007) An overview of the Oyashio ecosystem. Deep Sea Res II 54(23–26):2526–2542. doi: 10.1016/j.dsr2.2007.02.007 CrossRefGoogle Scholar
  33. Sakuramoto K, Shimoyama S, Suzuki N (2010) Relationships between environmental conditions and fluctuations in the recruitment of Japanese sardine, Sardinops melanostictus, in the northwestern Pacific. Bull Jpn Soc Fish Oceanogr 74(2):88–97Google Scholar
  34. Sasaoka K, Saitoh SI, Asanuma I et al (2002) Temporal and spatial variability of chlorophyll-a in the western subarctic Pacific determined from satellite and ship observations from 1997 to 1999. Deep Sea Res II 49(24–25):5557–5576. doi: 10.1016/S0967-0645(02)00206-0 CrossRefGoogle Scholar
  35. Siswanto E, Matsumoto K, Honda MC et al (2015) Reappraisal of meridional differences of factors controlling phytoplankton biomass and initial increase preceding seasonal bloom in the Northwestern Pacific Ocean. Remote Sens Environ 159:44–56. doi: 10.1016/j.rse.2014.11.028 CrossRefGoogle Scholar
  36. Siswanto E, Honda MC, Sasai Y et al (2016) Meridional and seasonal footprints of the Pacific Decadal Oscillation on phytoplankton biomass in the northwestern Pacific Ocean. J Oceanogr (this volume) Google Scholar
  37. Sugimoto S, Hanawa K (2009) Decadal and interdecadal variations of the Aleutian Low activity and their relation to upper oceanic variations over the North Pacific. J Meteo Soc Japan II 87(4):601–614CrossRefGoogle Scholar
  38. Toseland A, Daines SJ, Clark JR et al (2013) The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change 3:979–984. doi: 10.1038/nclimate1989 CrossRefGoogle Scholar
  39. Vantrepotte V, Mélin F (2009) Temporal variability of 10-year global SeaWiFS time-series of phytoplankton chlorophyll a concentration. ICES J Mar Sci 66(7):1547–1556. doi: 10.1093/icesjms/fsp107 CrossRefGoogle Scholar
  40. Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanogr 59(4):389–402. doi: 10.1023/A:1025580313836 CrossRefGoogle Scholar
  41. Yoshie N, Yamanaka Y, Kishi MJ et al (2003) One dimensional ecosystem model simulation of the effects of vertical dilution by the winter mixing on the spring diatom bloom. J Oceanogr 59(5):563–571. doi: 10.1023/B:JOCE.0000009586.02554.d3 CrossRefGoogle Scholar
  42. Zainuddin M, Saitoh K, Saitoh SI (2008) Albacore (Thunnus alalunga) fishing ground in relation to oceanographic condition in the western North Pacific Ocean using remotely sensed satellite data. Fish Oceanogr 17(2):61–73. doi: 10.1111/j.1365-2419.2008.00461.x CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Eko Siswanto
    • 1
    • 3
  • Makio C. Honda
    • 2
  • Kazuhiko Matsumoto
    • 2
  • Yoshikazu Sasai
    • 3
  • Tetsuichi Fujiki
    • 4
  • Kosei Sasaoka
    • 4
  • Toshiro Saino
    • 5
  1. 1.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  4. 4.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  5. 5.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations