Journal of Oceanography

, Volume 72, Issue 3, pp 359–371

Primary productivity at the time-series stations in the northwestern Pacific Ocean: is the subtropical station unproductive?

  • Kazuhiko Matsumoto
  • Osamu Abe
  • Tetsuichi Fujiki
  • Chiho Sukigara
  • Yoshihisa Mino
Special Section: Original Article K2S1 project


A comparative study of primary productivity in the northwestern Pacific Ocean was conducted at time-series stations K2 and S1 in the nutrient-rich subarctic gyre and oligotrophic subtropical gyre, respectively. The estimated annual means of net primary production (NPP) at the two stations were virtually identical: 292 mg C m−2 day−1 at K2 and 303 mg C m−2 day−1 at S1, whereas the annual mean of gross primary production (GPP) at S1 was 1.5 times that at K2. NPP was very much limited by the supply of nutrients, typified by nitrate at S1, although it was enhanced during winter due to mitigation of nutrient limitation. The NPP/GPP ratios were remarkably lower at S1 during the spring-to-autumn time interval than in winter. The reduced NPP/GPP ratio means that photosynthetically assimilated carbon was lost at a higher rate via respiration and extracellular release of dissolved organic carbon (DOC). The carbon loss (difference between GPP and NPP) was higher at S1 than at K2, probably because of the enhanced respiration due to the relatively high temperature throughout the year, as well as the enhanced DOC release by nutrient limitation. The released DOC should be accounted for as primary production, because it contributes to oceanic biogeochemistry in a manner similar to the photosynthesized compounds. Consequently, total primary production, the sum of NPP and DOC release, was higher at S1 than at K2.


Net primary production Gross primary production NPP/GPP ratio Dissolved organic carbon Subarctic gyre Subtropical gyre Time-series stations K2 and S1 


  1. Baines SB, Pace ML (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr 36(6):1078–1090CrossRefGoogle Scholar
  2. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  3. Bender M, Grande K, Johnson K, Marra J, Williams PJL, Sieburth J, Pilson M, Langdon C, Hitchcock G, Heinemann K (1987) A comparison of four methods for determining planktonic community production. Limnol Oceanogr 32(5):1085–1098CrossRefGoogle Scholar
  4. Bender M, Orchado J, Dickson M, Barber R, Lindley S (1999) In vitro O2 fluxes compared with 14C production and other rate terms during the JGOFS Equatorial Pacific experiment. Deep Sea Res I 46:637–654CrossRefGoogle Scholar
  5. Bingham FM (1992) Formation and spreading of subtropical mode water in the North Pacific. J Geophys Res-Oceans 97:11177–11189CrossRefGoogle Scholar
  6. Bjørnsen PK (1988) Phytoplankton exudation of organic matter: why do healthy cells do it? Limnol Oceanogr 33(1):151–154CrossRefGoogle Scholar
  7. Bopp L, Aumont O, Cadule P, Alvain S, Gehlen M (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606. doi:10.1029/2005GL023653 CrossRefGoogle Scholar
  8. Boyd P, Harrison PJ (1999) Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res II 46:2405–2432CrossRefGoogle Scholar
  9. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, Van Mooy B, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570CrossRefGoogle Scholar
  10. Carlson CA (2002) Production and removal processes. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 91–151CrossRefGoogle Scholar
  11. Chavez FP, Messié M, Pennington JT (2011) Marine primary production in relation to climate variability and change. Annu Rev Mar Sci 3:227–260CrossRefGoogle Scholar
  12. Church MJ, Lomas MW, Muller-Karger F (2013) Sea change: charting the course for biogeochemical ocean time-series research in a new millennium. Deep Sea Res II 93:2–15CrossRefGoogle Scholar
  13. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27(1):2–8CrossRefGoogle Scholar
  14. Dickson M-L, Orchardo J, Barber RT, Marra J, McCarthy JJ, Sambrotto RN (2001) Production and respiration rates in the Arabian Sea during the 1995 Northeast and Southwest Monsoons. Deep Sea Res II 48:1199–1230CrossRefGoogle Scholar
  15. Doney SC (2006) Oceanography: plankton in a warmer world. Nature 444:695–696CrossRefGoogle Scholar
  16. Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37CrossRefGoogle Scholar
  17. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897CrossRefGoogle Scholar
  18. Ducklow H (2000) Bacterial production and biomass in the oceans. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New York, pp 85–120Google Scholar
  19. Emerson S, Quay P, Karl D, Winn C, Tupas L, Landry M (1997) Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389:951–954CrossRefGoogle Scholar
  20. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish B-NOAA 70(4):1063–1085Google Scholar
  21. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, MaldenGoogle Scholar
  22. Fogg GE (1983) The ecological significance of extracellular products of phytoplankton photosynthesis. Bot Mar 26(1):3–14CrossRefGoogle Scholar
  23. Fujiki T, Hosaka T, Kimoto H, Ishimaru T, Saino T (2008) In situ observation of phytoplankton productivity by an underwater profiling buoy system: use of fast repetition rate fluorometry. Mar Ecol Prog Ser 353:81–88CrossRefGoogle Scholar
  24. Fujiki T, Matsumoto K, Mino Y, Sasaoka K, Wakita M, Kawakami H, Honda MC, Watanabe S, Saino T (2014) Seasonal cycle of phytoplankton community structure and photophysiological state in the western subarctic gyre of the North Pacific. Limnol Oceanogr 59(3):887–900CrossRefGoogle Scholar
  25. Fujiki T, Sasaoka K, Matsumoto K, Wakita M, Mino Y (2016) Seasonal variability of phytoplankton community structure in the subtropical western North Pacific. J Oceanogr. doi:10.1007/s10872-015-0346-9
  26. Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36CrossRefGoogle Scholar
  27. Harrison PJ, Boyd PW, Varela DE, Takeda S, Shiomoto A, Odate T (1999) Comparison of factors controlling phytoplankton productivity in the NE and NW subarctic Pacific gyres. Prog Oceanogr 43:205–234CrossRefGoogle Scholar
  28. Hashihama F, Furuya K, Kitajima S, Takeda S, Takemura T, Kanda J (2009) Macro-scale exhaustion of surface phosphate by dinitrogen fixation in the western North Pacific. Geophys Res Lett 36:L03610. doi:10.1029/2008GL036866 CrossRefGoogle Scholar
  29. Hashimoto S, Horimoto N, Yamaguchi Y, Ishimaru T, Saino T (2005) Relationship between net and gross primary production in the Sagami Bay, Japan. Limnol Oceanogr 50:1830–1835CrossRefGoogle Scholar
  30. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. J Cons Int Explor Mer 30(1):3–15CrossRefGoogle Scholar
  31. Honda MC (2003) Biological pump in Northwestern North Pacific. J Oceanogr 59(5):671–684CrossRefGoogle Scholar
  32. Honda MC, Watanabe S (2010) Importance of biogenic opal as ballast of particulate organic carbon (POC) transport and existence of mineral ballast-associated and residual POC in the Western Pacific Subarctic Gyre. Geophys Res Lett 37:L02605. doi:10.1029/2009gl041521 CrossRefGoogle Scholar
  33. Honda MC, Kawakami H, Matsumoto K, Wakita M, Fujiki T, Mino Y, Sukigara C, Kobari T, Uchimiya M, Kaneko R, Saino T (2015) Comparison of sinking particles in the upper 200 m between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiments. J Oceanogr. doi:10.1007/s10872-015-0280-x Google Scholar
  34. Honda MC, Matsumoto K, Fujiki T, Siswanto E, Sasaoka K, Kawakami H, Wakita M, Mino Y, Sukigara C, Kitamura M, Sasai Y, Smith SL, Hashioka T, Yoshikawa C, Kimoto K, Watanabe S, Kobari T, Nagata T, Hamasaki K, Kaneko R, Uchimiya M, Fukuda H, Abe O, Saino T (2016) Ecosystem and material cycle changes caused by climate change estimated from time-series observations in the western North Pacific: an overview of the K2S1 project. J Oceanogr (submitted)Google Scholar
  35. Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Mar Biol 139(3):587–596Google Scholar
  36. Imai K, Nojiri Y, Tsurushima N, Saino T (2002) Time series of seasonal variation of primary productivity at station KNOT (44°N, 155°E) in the sub-arctic western North Pacific. Deep Sea Res II 49:5395–5408CrossRefGoogle Scholar
  37. Irwin AJ, Oliver MJ (2009) Are ocean deserts getting larger? Geophys Res Lett 36:L18609. doi:10.1029/2009GL039883 CrossRefGoogle Scholar
  38. Ishida H, Watanabe Y, Ishizaka J, Nakano T, Nagai N, Watanabe Y, Shimamoto A, Maeda N, Magi M (2009) Possibility of recent changes in vertical distribution and size composition of chlorophyll-a in the western North Pacific region. J Oceanogr 65:179–186CrossRefGoogle Scholar
  39. Karl DM, Christian JR, Dore JE, Hebel DV, Letelier RM, Tupas LM, Winn CD (1996) Seasonal and interannual variability in primary production and particle flux at station ALOHA. Deep Sea Res II 43(2–3):539–568CrossRefGoogle Scholar
  40. Karl DM, Letelier R, Tupas L, Dore J, Christian J, Hebel D (1997) The role of nitrogen fixation in the biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388:533–538CrossRefGoogle Scholar
  41. Kiddon J, Bender ML, Marra J (1995) Production and respiration in the 1989 North Atlantic spring bloom: an analysis of irradiance-dependent changes. Deep Sea Res I 42:553–576CrossRefGoogle Scholar
  42. Kouketsu S, Murata A, Doi T (2013) Decadal changes in dissolved inorganic carbon in the Pacific Ocean. Global Biogeochem Cycles 27:65–76CrossRefGoogle Scholar
  43. Laws EA (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep Sea Res A 38(1):143–167CrossRefGoogle Scholar
  44. Laws EA, Landry MR, Barber RT, Campbell L, Dickson M-L, Marra J (2000) Carbon cycling in primary production bottle incubations: inferences from grazing experiments and photosynthetic studies using 14C and 18O in the Arabian Sea. Deep Sea Res II 47(7–8):1339–1352CrossRefGoogle Scholar
  45. Lin II (2012) Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J Geophys Res-Oceans 117:C03039. doi:10.1029/2011JC007626 Google Scholar
  46. Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX: a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283CrossRefGoogle Scholar
  47. Malinsky-Rushansky NZ, Legrand C (1996) Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake. Mar Ecol Prog Ser 132:249–255CrossRefGoogle Scholar
  48. Marañón E, Cermeño P, Fernández E, Rodríguez J, Zabala L (2004) Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol Oceanogr 49(5):1652–1666CrossRefGoogle Scholar
  49. Marinov I, Doney SC, Lima ID (2010) Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences 7:3941–3959CrossRefGoogle Scholar
  50. Marra J, Barber RT (2004) Phytoplankton and heterotrophic respiration in the surface layer of the ocean. Geophys Res Lett 31:L09314. doi:10.1029/2004GL019664 Google Scholar
  51. Matsumoto K, Honda MC, Sasaoka K, Wakita M, Kawakami H, Watanabe S (2014) Seasonal variability of primary production and phytoplankton biomass in the western Pacific subarctic gyre: control by light availability within the mixed layer. J Geophys Res-Oceans 119:6523–6534. doi:10.1002/2014JC009982 CrossRefGoogle Scholar
  52. McClain CR, Signorini SR, Christian JR (2004) Subtropical gyre variability observed by ocean-color satellites. Deep Sea Res II 51(1–3):281–301CrossRefGoogle Scholar
  53. McGillicuddy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266CrossRefGoogle Scholar
  54. Obayashi Y, Tanoue E, Suzuki K, Handa N, Nojiri Y, Wong CS (2001) Spatial and temporal variabilities of phytoplankton community structure in the northern North Pacific as determined by phytoplankton pigments. Deep Sea Res I 48(2):439–469CrossRefGoogle Scholar
  55. Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618. doi:10.1029/2007GL031745 CrossRefGoogle Scholar
  56. Sarmiento JL, Slater R, Barber R, Bopp L, Doney SC, Hirst AC, Kleypas J, Matear R, Mikolajewicz U, Monfray P, Soldatov V, Spall SA, Stouffer R (2004) Response of ocean ecosystems to climate warming. Global Biogeochem Cycles 18(3):GB3003. doi:10.1029/2003GB002134 CrossRefGoogle Scholar
  57. Sathyendranath S, Stuart V, Nair A, Oka K, Nakane T, Bouman H, Forget MH, Maass H, Platt T (2009) Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar Ecol Prog Ser 383:73–84CrossRefGoogle Scholar
  58. Shiomoto A (2000) Efficiency of water-column light utilization in the subarctic northwestern Pacific. Limnol Oceanogr 45:982–987CrossRefGoogle Scholar
  59. Shiozaki T, Furuya K, Kodama T, Takeda S (2009) Contribution of N2 fixation to new production in the western North Pacific Ocean along 155°E. Mar Ecol Prog Ser 377:19–32CrossRefGoogle Scholar
  60. Smith EM, Kemp WM (1995) Seasonal and regional variations in plankton community production and respiration for Chesapeake Bay. Mar Ecol Prog Ser 116:217–231CrossRefGoogle Scholar
  61. Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Micro 9:499–508CrossRefGoogle Scholar
  62. Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, Doney SC, Gehlen M, Lindsay K, Moore JK, Schneider B, Segschneider J (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7:979–1005CrossRefGoogle Scholar
  63. Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II 48(8–9):1405–1447CrossRefGoogle Scholar
  64. Suggett D, Kraay G, Holligan P, Davey M, Aiken J, Geider R (2001) Assessment of photosynthesis in a spring cyanobacterial bloom by use of a fast repetition rate fluorometer. Limnol Oceanogr 46(4):802–810CrossRefGoogle Scholar
  65. Suggett DJ, Oxborough K, Baker NR, MacIntyre HL, Kana TM, Geider RJ (2003) Fast repetition rate and pulse amplitude modulation chlorophyll a fluorescence measurements for assessment of photosynthetic electron transport in marine phytoplankton. Eur J Phycol 38(4):371–384CrossRefGoogle Scholar
  66. Sukigara C, Suga T, Saino T, Toyama K, Yanagimoto D, Hanawa K, Shikama N (2011) Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pacific. J Oceanogr 67:77–85CrossRefGoogle Scholar
  67. Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J Oceanogr 46:190–194Google Scholar
  68. Teira E, Pazó MJ, Serret P, Fernández E (2001) Dissolved organic carbon production by microbial populations in the Atlantic Ocean. Limnol Oceanogr 46(6):1370–1377CrossRefGoogle Scholar
  69. Wakita M, Watanabe S, Murata A, Tsurushima N, Honda M (2010) Decadal change of dissolved inorganic carbon in the subarctic western North Pacific Ocean. Tellus B 62(5):608–620CrossRefGoogle Scholar
  70. Wakita M, Watanabe S, Honda M, Nagano A, Kimoto K, Matsumoto K, Kitamura M, Sasaki K, Kawakami H, Fujiki T, Sasaoka K, Nakano Y, Murata A (2013) Ocean acidification from 1997 to 2011 in the subarctic western North Pacific Ocean. Biogeosciences 10(12):7817–7827CrossRefGoogle Scholar
  71. Wakita M, Honda MC, Matsumoto K, Fujiki T, Kawakami H, Yasunaka S, Sasai Y, Sukigara C, Uchimiya M, Kitamura M, Kobari T, Mino Y, Nagano A, Watanabe S, Saino T (2016) Biological organic carbon export estimated from the annual carbon budget observed in the surface waters of the western subarctic and subtropical North Pacific Ocean from 2004 to 2013. J Oceanogr (submitted)Google Scholar
  72. Welschmeyer NA, Strom S, Goericke R, DiTullio G, Belvin M, Petersen W (1993) Primary production in the subarctic Pacific Ocean: project SUPER. Prog Oceanogr 32:101–135CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Kazuhiko Matsumoto
    • 1
  • Osamu Abe
    • 2
  • Tetsuichi Fujiki
    • 3
  • Chiho Sukigara
    • 4
  • Yoshihisa Mino
    • 4
  1. 1.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  2. 2.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan
  3. 3.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  4. 4.Hydrospheric Atmospheric Research CenterNagoya UniversityNagoyaJapan

Personalised recommendations