Journal of Oceanography

, Volume 72, Issue 3, pp 453–464 | Cite as

Physical oceanographic conditions around the S1 mooring site

Special Section: Original Article K2S1 project


We describe physical oceanographic conditions around the S1 biogeochemical mooring site (30°N, 145°E) between February 2010 and July 2013. At the S1 mooring site, there is a clear seasonal variability of the mixed layer depth, wind forcing as well as horizontal kinetic energy in a near-inertial band. Interannual variability of the winter mixed layer was observed. The winter mixed layer depth was shallower in early 2010 and became deeper afterwards. Several mesoscale eddies and typhoons passed by the S1 mooring sites every year. Based on observed events, we suggest that those physical processes possibly affected biogeochemical properties around the S1 mooring site.


S1 mooring Mixed layer Eddy Typhoon Biogeochemical process 



We are indebted to the captain, crew, and other scientists on the R/V Mirai for their successful deployments of moorings and shipboard measurements. We thank Drs. Sato and Uchida at JAMSTEC for their careful calibrations of floats’ dissolved oxygen sensors, and Drs. Fujiki and Honda for providing us ADCP data, fruitful discussions and comments. Comments from three anonymous reviewers and the editor Dr. Oka greatly improved the manuscript. S. Kouketsu was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (Grant Number 12024485). We express our appreciation to the late Dr. Toshiro Saino for his leadership on the K2/S1 project and encouragement.


  1. Alford MH (2003) Energy available for ocean mixing redistributed through long-range propagation of internal waves. Nature 423:159–163CrossRefGoogle Scholar
  2. Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi: 10.1029/2007GL030812 CrossRefGoogle Scholar
  3. Cronin MF, Bond NA, Farrar JT, Ichikawa H, Jayne SR, Kawai Y, Konda M, Qiu B, Rainville L, Tomita H (2013) Formation and erosion of the seasonal thermocline in the Kuroshio Extension recirculation gyre. Deep Sea Res II 85:62–74CrossRefGoogle Scholar
  4. Feldman GC, McClain CR (2013) Ocean Color Web, MODIS Aqua, NASA Goddard Space Flight Center. In: Kuring N, Bailey SW (eds).
  5. Fujiki T, Hosaka T, Kimoto H, Ishimaru T, Saino T (2008) In situ observation of phytoplankton productivity by an underwater profiling buoy system: use of fast repetition rate (FRR) fluorometry. Mar Ecol Prog Ser 353:81–88CrossRefGoogle Scholar
  6. Fujiki T, Matsumoto K, Watanabe S, Hosaka T, Saino T (2011) Phytoplankton productivity in the western subarctic gyre of the North Pacific in early summer 2006. J Oceanogr 67:295–303CrossRefGoogle Scholar
  7. Fujiki T, Sasaoka K, Matsumoto K, Wakita M, Mino Y (2015) Seasonal variability of phytoplankton composition in the subtropical western North Pacific (accepted)Google Scholar
  8. Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: better fitting equations. Limnol Oceanogr 37:1307–1312CrossRefGoogle Scholar
  9. Gill AE (1982) Atmosphere-Ocean dynamics. International geophysics series. Academic Press, London, p 662Google Scholar
  10. Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate: observing and modelling the global ocean. Academic, San Diego, pp 373–386CrossRefGoogle Scholar
  11. Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev 8:47–59CrossRefGoogle Scholar
  12. Inoue R, Suga T, Kouketsu S, Kita T, Hosoda S, Kobayashi T, Sato K, Nakajima H, and Kawano T (2015) Western north Pacific integrated physical-biogeochemical ocean observation experiment (INBOX): part 1. Specifications and chronology of the S1-INBOX floats. J Mar Res (accepted)Google Scholar
  13. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Josephand D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  14. Kouketsu S, Tomita H, Oka E, Hosoda S, Kobayashi T, Sato K (2012) The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J Oceanogr 68(1):63–77CrossRefGoogle Scholar
  15. Kouketsu S, Kaneko H, Okunishi T, Sasaoka K, Itoh S, Inoue R, Ueno H (2015) Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. J Oceanogr. doi: 10.1007/s10872-015-0286-4 Google Scholar
  16. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336CrossRefGoogle Scholar
  17. Leaman KD, Sanford TB (1975) Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J Geophys Res 80:1975–1978CrossRefGoogle Scholar
  18. Levitus S (1982) Climatological Atlas of the World Ocean. NOAA professional paper 13. US. Government Printing Office, Washington, DCGoogle Scholar
  19. Lin I-I (2012) Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J Geophys Res 117:C03039. doi: 10.1029/2011JC007626 Google Scholar
  20. Lin P, Chai F, Xue H, Xiu P (2014) Modulation of decadal oscillation on surface chlorophyll in the Kuroshio Extension. J Geophys Res Oceans. doi: 10.1002/2013JC009359 Google Scholar
  21. McClain CR, Feldman GC, Hooker SB (2004) An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep Sea Res II 51:5–42CrossRefGoogle Scholar
  22. McGillicuddy DJ Jr, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickey TD, McNeil J, Michaels AF, Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394:263–266CrossRefGoogle Scholar
  23. McGillicuddy DJ Jr, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA, Steinberg DK (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316:1021–1026CrossRefGoogle Scholar
  24. Michaels AF, Knap AH, Dow RL, Gundersen K, Johnson RJ, Sorensen J, Close A, Knauer GA, Lohrenz SE, Asper VA, Tuel M, Bidigare R (1994) Seasonal patterns of ocean biogeochemistry at the U.S. JGOFS Bermuda Atlantic time-series Study site. Deep Sea Res I 41:1013–1038CrossRefGoogle Scholar
  25. Oka E (2009) Seasonal and interannual variation of North Pacific subtropical mode water in 2003–2006. J Oceanogr 65:151–164CrossRefGoogle Scholar
  26. Oka E, Qiu B (2012) Progress of North Pacific mode water research in the past decade. J Oceanogr 68:5–20CrossRefGoogle Scholar
  27. Oka E, Qiu B, Kouketsu S, Uehara K, Suga T (2012) Decadal seesaw of the central and subtropical mode water formation associated with the Kuroshio Extension variability. J Oceanogr 41:113–129Google Scholar
  28. Oka E, Qiu B, Takatani Y, Enyo K, Sasano D, Kosugi N, Ishii M, Nakano T, Suga T (2015) Decadal variability of subtropical mode water subduction and its impact on biogeochemistry. J Oceanogr. doi: 10.1007/s10872-015-0300-x Google Scholar
  29. Plueddemann AJ, Farrar JT (2006) Observations and models of the energy flux from the wind to mixed layer inertial currents. Deep Sea Res II 53:5–30CrossRefGoogle Scholar
  30. Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–175CrossRefGoogle Scholar
  31. Price JF (1983) Internal wave wake of a moving storm. Part I: scales, energy budget and observations. J Phys Oceanogr 13:949–965CrossRefGoogle Scholar
  32. Price JF, Sanford TB, Forristall GZ (1994) Forced stage response to a moving hurricane. J Phys Oceanogr 24:233–260CrossRefGoogle Scholar
  33. Qiu B, Chen S (2005) Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J Phys Oceanogr 35(11):2090–2103CrossRefGoogle Scholar
  34. Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observations of the subtropical mode water evolution from the Kuroshio Extension System Study. J Phys Oceanogr 36:457–473CrossRefGoogle Scholar
  35. Qiu B, Chen S, Schneider N, Taguchi B (2014) A coupled decadal prediction of the dynamics state of the Kuroshio Extension system. J Clim 27:1751–1764CrossRefGoogle Scholar
  36. Rainville L, Jayne SR, Cronin MF (2014) Variations of the North Pacific subtropical mode water from direct observations. J Clim 27:2842–2860CrossRefGoogle Scholar
  37. Sanford TB, Price JF, Girton JB (2011) Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J Phys Oceanogr 41:1041–1056CrossRefGoogle Scholar
  38. Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH (2001) Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res II 48:1405–1447CrossRefGoogle Scholar
  39. Sugimoto S, Takahashi N, Hanawa K (2013) Marked freshening of North Pacific subtropical mode water in 2009 and 2010: influence of freshwater supply in the 2008 warm season. Geophys Res Lett 40:3102–3105CrossRefGoogle Scholar
  40. Sukigara C, Suga T, Saino T, Toyama K, Yanagimoto D, Hanawa K, Shikama N (2011) Biogeochemical evidence of large diapycnal diffusivity associated with the subtropical mode water of the North Pac. J Oceanogr 67:77–85CrossRefGoogle Scholar
  41. Sweeney EN, McGillicuddy DJ Jr, Buesseler KO (2003) Biogeochemical impacts due to mesoscale eddy activity in the Sargasso Sea as measured at the Bermuda Atlantic Time Series Study (BATS). Deep Sea Res II 50:3017–3039CrossRefGoogle Scholar
  42. Uchida H, Kawano T, Kaneko I, Fukasawa M (2008) In situ calibration of Optode-based oxygen sensors. J Atmos Oceanic Technol 25:2271–2281CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  1. 1.Research and Development Center for Global ChangeJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations