Journal of Oceanography

, Volume 71, Issue 6, pp 637–661 | Cite as

Trends in pCO2 and sea–air CO2 flux over the global open oceans for the last two decades

  • Yosuke Iida
  • Atsushi Kojima
  • Yusuke Takatani
  • Toshiya Nakano
  • Hiroyuki Sugimoto
  • Takashi Midorikawa
  • Masao Ishii
Original Article


To date, millions of data for partial pressure of carbon dioxide in surface seawater (pCO2s) have been acquired from global oceans. However, pCO2s varies extremely both in space and time, and it is still necessary to fill in its spatiotemporal gaps to evaluate the changes in sea–air CO2 flux from regional to global scales. In the present study, we have analyzed the rates of pCO2s increase for the past decades, ranging from +1.21 µatm year−1 in the western equatorial Pacific to +2.00 µatm year−1 in the Southern Ocean, and developed algorithms to reconstruct global monthly pCO2s fields based on a quality-controlled database, Surface Ocean CO2 Atlas (SOCAT) version 2. The error of pCO2s algorithms is ±16.3 µatm. The mean annual global sea–air CO2 flux for the years 1990–2012 was estimated to be −1.76 PgC year−1 (contemporary flux; a negative value indicates oceanic uptake). The uncertainty in this estimate is calculated to be 0.77 PgC year−1 (44 %), i.e., 0.09 PgC year−1 from our empirical method to interpolate/extrapolate pCO2s, and 0.67 PgC year−1 from determination of the rates of pCO2s increase and the rest from gas transfer processes including wind speed (0.26 PgC year−1) and a scaling factor of piston velocity (0.26 PgC year−1). The decadal mean CO2 flux showed a trend toward increasing uptake from −1.67 PgC year−1 for 1990–1999 to −1.92 PgC year−1 for 2003–2012, due to growing uptake in the Pacific and Atlantic Oceans. However, these estimates of CO2 flux are sensitive to the rates of pCO2s increase used to constrain the long-term pCO2s change for each sub-region.


pCO2 mapping pCO2 trend CO2 flux Gas exchange Carbon cycle Biogeochemistry 



This work has been done on the basis of the SOCAT V2 database to evaluate rate of pCO2s increase and derive the algorithms for mapping pCO2s fields. The Surface Ocean CO2 Atlas (SOCAT) is an international effort, supported by the International Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry and Ecosystem Research program (IMBER), to deliver a uniformly quality controlled surface ocean CO2 database. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions to SOCAT. Authors acknowledge support from the Meteorological Research Institute’s priority research fund for observation and diagnostic analysis of carbon cycle in the atmosphere and ocean, and MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 24121003.


  1. Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174. doi: 10.1175/2010BAMS2946.1 CrossRefGoogle Scholar
  2. Bakker DCE, Pfeil B, Smith K et al (2014) An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth Syst Sci Data 6:69–90. doi: 10.5194/essd-6-69-2014 CrossRefGoogle Scholar
  3. Bates NR, Pequignet AC, Sabine CL (2006) Ocean carbon cycling in the Indian Ocean: 1. Spatiotemporal variability of inorganic carbon and air-sea CO2 gas exchange. Global Biogeochem Cycles 20:GB3020. doi: 10.1029/2005GB002491 Google Scholar
  4. Bates NR, Best MHP, Neely K, Garley R, Dickson AG, Johnson RJ (2012) Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9:2509–2522CrossRefGoogle Scholar
  5. Bates NR, Astor YM, Church MJ, Currie K, Dore JE, Gonzalez-Davila M, Lorenzoni L, Muller-Karger F, Olafsson J, Santana-Casiano JM (2014) A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27:126–141CrossRefGoogle Scholar
  6. Browning TJ, Stone K, Bouman HA, Mather TA, Pyle DM, Moore CM, Martinez-Vicente V (2015) Volcanic ash supply to the surface ocean—remote sensing of biological responses and their wider biogeochemical significance. Front Mar Sci 2:14. doi: 10.3389/fmars.2015.00014 CrossRefGoogle Scholar
  7. Chierici M, Signorini SR, Mattsdotter-Bjork M, Fransson A, Olsen A (2012) Surface water fCO2 algorithms for the high-latitude Pacific sector of the Southern Ocean. Remote Sens Environ 119:184–196CrossRefGoogle Scholar
  8. Dore J, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci 106:12235–12240. doi: 10.1073/pnas.0906044106 CrossRefGoogle Scholar
  9. Fay AR, McKinley GA (2013) Global trends in surface ocean pCO2 from in situ data. Global Biogeochem Cycles 27. doi: 10.1002/gbc.20051 Google Scholar
  10. Fay AR, McKinley GA, Lovenduski NS (2014) Southern Ocean carbon trends: sensitivity to methods. Geophys Res Lett 41:6833–6840. doi: 10.1002/2014GL061324 CrossRefGoogle Scholar
  11. Feldman GC, McClain CR (2010) Ocean color web, SeaWiFS reprocessing 2010.0. NASA Goddard Space Flight Center. In: Kuring N and Bailey SW (eds) Accessed 26 Sept 2012
  12. Feldman GC, McClain CR (2012) Ocean color web, MODIS—aqua reprocessing 2012.0. NASA Goddard Space Flight Center. In: Kuring N, Bailey SW (eds). Accessed 26 Sept 2012
  13. Feng M, Böning C, Biastoch A, Behrens E, Weller E, Masumoto Y (2011) The reversal of the multidecadal trends of the equatorial Pacific easterly winds, and the Indonesian Throughflow and Leeuwin Current transports. Geophys Res Lett 38:L11604. doi: 10.1029/2011GL047291 CrossRefGoogle Scholar
  14. Frölicher TL, Joos F, Raible CC, Sarmiento JL (2013) Atmospheric CO2 response to volcanic eruptions: the role of ENSO, season, and variability. Global Biogeochem Cycles 27:239–251. doi: 10.1002/gbc.20028 CrossRefGoogle Scholar
  15. González-Dávila M, Santana-Casiano JM (2009) Sea surface and atmospheric fCO2 data measured during the ESTOC time series cruises from 1995–2009. CDIAC, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:  10.3334/CDIAC/otg.TSM_ESTOC Accessed Sept 2013
  16. Goyet C, Millero FJ, O’Sullivan DW, Eischeid G, McCue SJ, Bellerby RGJ (1998) Temporal variation of pCO2 in surface seawater of the Arabian Sea in 1995. Deep-Sea Res Pt II 45:609–623CrossRefGoogle Scholar
  17. Ho DT, Wanninkhof R, Schlosser P, Ullman DS, Hebert D, Sullivan KF (2011) Towards a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. J Geophys Res 116:C00F04. doi: 10.1029/2010JC006854 Google Scholar
  18. Inoue HY, Matsueda H, Ishii M, Fushimi K, Hirota M, Asanuma I, Takasugi Y (1995) Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific, 1984–1993. Tellus 47B:391–413CrossRefGoogle Scholar
  19. Inoue HY, Ishii M, Matsueda H, Aoyama M (1996) Changes in longitudinal distribution of the partial pressure of CO2 (pCO2) in the central and western equatorial Pacific, west of 160°W. Geophys Res Lett 23:1781–1784CrossRefGoogle Scholar
  20. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker, TF, D Qin, G-K Plattner, M Tignor, SK Allen, J Boschung, A Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535Google Scholar
  21. Ishii M, Inoue HY, Matsueda H (2002) Net community production in the marginal ice zone and its importance for the variability of the oceanic pCO2 in the Southern Ocean south of Australia. Deep-Sea Res Pt II 49:1691–1706CrossRefGoogle Scholar
  22. Ishii M, Inoue HY, Midorikawa T, Saito S, Tokieda T, Sasano D, Nakadate A, Nemoto K, Metzl N, Wong CS, Feely RA (2009) Spatial variability and decadal trend of the oceanic CO2 in the western equatorial Pacific warm/fresh water. Deep-Sea Res Pt II 56:591–606. doi: 10.1016/j.dsr2.2009.01.002 CrossRefGoogle Scholar
  23. Ishii M, Kosugi N, Sasano D, Saito S, Midorikawa T, Inoue HY (2011) Ocean acidification off the south coast of Japan: a result from time series observations of CO2 parameters from 1994 to 2008. J Geophys Res 116:C06022. doi: 10.1029/2010JC006831 Google Scholar
  24. Ishii M, Feely RA, Rodgers KB et al (2014) Air-sea CO2 flux in the Pacific Ocean for the period 1990–2009. Biogeosciences 11:709–734. doi: 10.5194/bg-11-709-2014 CrossRefGoogle Scholar
  25. Iudicone D, Rodgers KB, Stendardo I, Aumont O, Madec G, Bopp L, Mangoni O, Ribera d’Alcala’ M (2011) Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle. Biogeosciences 8:103–1052. doi: 10.5194/bg-8-1031-2011 CrossRefGoogle Scholar
  26. Jiang C, Cronin MF, Kelly KA, Thompson L (2005) Evaluation of a hybrid satellite- and NWP-based turbulent heat flux product using Tropical Atmosphere-Ocean (TAO) buoys. J Geophys Res 110:C09007. doi: 10.1029/2004JC002824 Google Scholar
  27. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  28. Keeling CD (1960) The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12:200–203CrossRefGoogle Scholar
  29. Keeling CD (1968) Carbon dioxide in surface ocean waters. J Geophys Res 73:4543–4553CrossRefGoogle Scholar
  30. Khatiwala S, Tanhua T, Mikaloff Fletcher S et al (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10:2169–2191. doi: 10.5194/bg-10-2169-2013 CrossRefGoogle Scholar
  31. Kumar MD, Naqvi SWA, George MD, Jayakumar DA (1996) A sink for atmospheric carbon dioxide in the northeast Indian Ocean. J Geophys Res 101:18121–18125CrossRefGoogle Scholar
  32. Kurihara Y, Sakurai T, Kuragano T (2006) Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in situ observations. Sokko-jiho 73:S1–S18 (in Japanese) Google Scholar
  33. Landschützer P, Gruber N, Bakker DCE, Schuster U (2014) Recent variability of the global ocean carbon sink. Global Biogeochem Cycles 28:927–949. doi: 10.1002/2014GB004853 CrossRefGoogle Scholar
  34. Le Quéré C, Moriarty R, Andrew RM et al (2015) Global carbon budget 2014. Earth Syst Sci Data 7:47–85. doi: 10.5194/essd-7-47-2015 CrossRefGoogle Scholar
  35. Lefèvre N, Moore G, Aiken J, Watson A, Cooper D, Ling R (1998) Variability of pCO2 in the tropical Atlantic in 1995. J Geophys Res 103:5623–5634CrossRefGoogle Scholar
  36. Lefèvre N, Diverre D, Gallois F (2010) Origin of CO2 undersaturation in the western tropical Atlantic. Tellus 62B:595–607CrossRefGoogle Scholar
  37. Lenton A, Metzl N, Takahashi T, Kuchinke M, Matear RJ, Roy T, Sutherland SC, Sweeney C, Tilbrook B (2012) The observed evolution of oceanic pCO2 and its drivers over the last two decades. Global Biogeochem Cycles 26:GB2021. doi: 10.1029/2011GB004095 CrossRefGoogle Scholar
  38. Lenton A, Tilbrook B, Law RM et al (2013) sea–air CO2 fluxes in the Southern Ocean for the period 1990–2009. Biogeosciences 10:4037–4054. doi: 10.5194/bg-10-4037-2013 CrossRefGoogle Scholar
  39. Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard P (ed) The role of air-sea exchange in geochemical cycling. Springer, New York, pp 113–127CrossRefGoogle Scholar
  40. Maki T, Ikegami M, Fujita T, Hirahara T, Yamada K, Mori K, Takeuchi A, Tsutsumi Y, Suda K, Conway TJ (2010) New technique to analyse global distributions of CO2 concentrations and fluxes from non-processed observational data. Tellus 62B:797–809. doi: 10.1111/j.1600-0889.2010.00488.x CrossRefGoogle Scholar
  41. Metzl N, Tilbrook B, Poisson A (1999) The annual fCO2 cycle and the air-sea CO2 flux in the sub-Antarctic Ocean. Tellus 51B:849–861CrossRefGoogle Scholar
  42. Midorikawa T, Ishii M, Kosugi N, Sasano D, Nakano T, Saito S, Sakamoto N, Nakano H, Inoue HY (2012) Recent deceleration of oceanic pCO2 increase in the western North Pacific in winter. Geophys Res Lett 39:L12601. doi: 10.1029/2012GL051665 CrossRefGoogle Scholar
  43. Millero FJ, Degler EA, O’Sullivan DW, Goyet C, Eischeid G (1998) The carbon dioxide system in the Arabian Sea. Deep-Sea Res Pt II 45:2225–2252CrossRefGoogle Scholar
  44. Murata A, Fushimi K, Yoshikawa H, Hirota M, Nemoto K, Okabe M, Yabuki H, Asanuma I (1996) Evaluation of the CO2 exchange at sea surface in the western North Pacific: distributions of the ΔpCO2 and CO2 flux. J Meteorol Res 48:33–58 (in Japanese) Google Scholar
  45. Naegler T (2009) Reconciliation of excess 14C-constrained global CO2 piston velocity estimates. Tellus 61B:372–384CrossRefGoogle Scholar
  46. Naegler T, Ciais P, Rodgers K, Levin I (2006) Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophys Res Lett 33:L11802. doi: 10.1029/2005GL025408 CrossRefGoogle Scholar
  47. Nakaoka S, Aoki A, Nakazawa T, Hashida G, Morimoto S, Yamanouchi T, Inoue HY (2006) Temporal and spatial variations of the oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and Barents Sea. Tellus 58B:148–161CrossRefGoogle Scholar
  48. Nakaoka S, Telszewski M, Nojiri Y, Yasunaka S, Miyazaki C, Mukai H, Usui N (2013) Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique. Biogeosciences 10:6093–6106. doi: 10.5194/bg-10-6093-2013 CrossRefGoogle Scholar
  49. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14:373–387CrossRefGoogle Scholar
  50. Olsen A, Brown KR, Chierici M, Johannessen T, Neill C (2008) Sea-surface CO2 fugacity in the subpolar North Atlantic. Biogeosciences 5:535–547. doi: 10.5194/bg-5-535-2008 CrossRefGoogle Scholar
  51. Onogi K, Tsutsui J, Koide H et al (2007) The JRA-25 Reanalysis. J Meteor Soc Jpn 85:369–432CrossRefGoogle Scholar
  52. Oudot C, Andrie C, Montel Y (1987) Evolution du CO2 océanique et atmosphérique sur la période 1982–1984 dans l’Atlantique tropical. Deep-Sea Res 34:1107–1137CrossRefGoogle Scholar
  53. Parard G, Lefèvre N, Boutin J (2010) Sea water fugacity of CO2 at the PIRATA mooring at 6°S, 10°W. Tellus 62B:636–648CrossRefGoogle Scholar
  54. Park G-H, Wanninkhof R, Doney SC, Takahashi T, Lee K, Feely RA, Sabine CL, Triñanes J, Lima I (2010) Variability of global air-sea CO2 fluxes over the last three decades. Tellus 62B:352–368. doi: 10.1111/j.1600-0889.2010.00498.x CrossRefGoogle Scholar
  55. Pfeil B, Olsen A, Bakker DCE et al (2013) A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 5:125–143. doi: 10.5194/essd-5-125-2013 CrossRefGoogle Scholar
  56. Poisson A, Metzl N, Brunet C, Schauer B, Bres B, Ruiz-Pino D, Louanchi F (1993) Variability of sources and sinks of CO2 in the western Indian and Southern Oceans during the year 1991. J Geophys Res 98:22759–22778CrossRefGoogle Scholar
  57. Rödenbeck C, Bakker DCE, Metzl N, Olsen A, Sabine C, Cassar N, Reum F, Keeling RF, Heimann M (2014) Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 11:4599–4613. doi: 10.5194/bg-11-4599-2014 CrossRefGoogle Scholar
  58. Sabine CL, Wanninkhof R, Key RM, Goyet C, Millero FJ (2000) Seasonal CO2 fluxes in the tropical and subtropical Indian Ocean 2. Mar Chem 72:33–53CrossRefGoogle Scholar
  59. Sallée JB, Matear RJ, Rintoul SR, Lenton A (2012) Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat Geosci 5:579–584. doi: 10.1038/Ngeo1523 CrossRefGoogle Scholar
  60. Santana-Casiano JM, González-Dávila M, Ucha IR (2009) Carbon dioxide fluxes in the Benguela upwelling system during winter and spring: a comparison between 2005 and 2006. Deep-Sea Res Pt II 56:533–541CrossRefGoogle Scholar
  61. Sarma VVSS (2003) Monthly variability in surface pCO2 and net air-sea CO2 flux in the Arabian Sea. J Geophys Res 108. doi: 10.1029/2001JC001062 Google Scholar
  62. Sarma VVSS, Lenton A, Law R et al (2013) sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences 10:7035–7052. doi: 10.5194/bgd-10-7035-2013 CrossRefGoogle Scholar
  63. Sarmiento JL (1993) Atmospheric CO2 stalled. Nature 365:697–698CrossRefGoogle Scholar
  64. Sasse TP, McNeil BI, Abramowitz G (2013) A new constraint on global air-sea CO2 fluxes using bottle carbon data. Geophys Res Lett 40:1594–1599. doi: 10.1002/grl.50342 CrossRefGoogle Scholar
  65. Schuster U, Watson AJ, Bates NR, Corbière A, González-Dávila M, Metzl N, Pierrot D, Santana-Casiano M (2009) Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-Sea Res Pt II 56:620–629CrossRefGoogle Scholar
  66. Schuster U, McKinley GA, Bates N et al (2013) An assessment of the Atlantic and Arctic sea–air CO2 fluxes, 1990–2009. Biogeosciences 10:607–627. doi: 10.5194/bg-10-607-2013 CrossRefGoogle Scholar
  67. Sugimoto H, Hiraishi N, Ishii M, Midorikawa T (2012) A method for estimating the sea–air CO2 flux in the Pacific Ocean. Technical report of the Meteorological Research Institute, vol 66, p 32Google Scholar
  68. Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem Cycles 21:GB2015. doi: 10.1029/2006GB002784 CrossRefGoogle Scholar
  69. Takahashi T (1961) Carbon dioxide in the atmosphere and in Atlantic Ocean water. J Geophys Res 66:477–494CrossRefGoogle Scholar
  70. Takahashi T, Feely RA, Weiss R, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. Proc Natl Acad Sci 94:8292–8299CrossRefGoogle Scholar
  71. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res Pt II 49:1601–1622CrossRefGoogle Scholar
  72. Takahashi T, Sutherland SC, Feely RA, Wanninkhof R (2006) Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. J Geophys Res 111:C07S05. doi: 10.1029/2005JC003074 CrossRefGoogle Scholar
  73. Takahashi T, Sutherland SC, Kozyr A. (2008) Global ocean surface water partial pressure of CO2 database: measurements performed during 1968–2006 (version 1.0). ORNL/CDIAC-152, NDP-088, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, TN, p 20Google Scholar
  74. Takahashi T, Sutherland SC, Wanninkhof R et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res Pt II 56:554–577CrossRefGoogle Scholar
  75. Takahashi T, Sutherland SC, Chipman DW, Goddard JG, Ho C (2014a) Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar Chem 164:95–125. doi: 10.1016/j.marchem.2014.06.004 CrossRefGoogle Scholar
  76. Takahashi T, Sutherland SC, Kozyr A (2014) Global ocean surface water partial pressure of CO2 database: measurements performed during 1957–2013 (version 2013). ORNL/CDIAC-160, NDP-088(V2013). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. doi: 10.3334/CDIAC/OTG.NDP088(V2013)
  77. Tseng C-M, Liu K-K, Gong G-C, Shen P-Y, Cai W-J (2011) CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change. Geophys Res Lett 38:L24609. doi: 10.1029/2011GL049774 CrossRefGoogle Scholar
  78. Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822CrossRefGoogle Scholar
  79. Wanninkhof R (1992) Relation between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7383CrossRefGoogle Scholar
  80. Wanninkhof R, Park G-H, Takahashi T et al (2013) Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10:1983–2000. doi: 10.5194/bg-10-1983-2013 CrossRefGoogle Scholar
  81. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar
  82. Woolf DK (2005) Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus 57B:87–94CrossRefGoogle Scholar
  83. Zeng J, Nojiri Y, Landschützer P, Telszewski M, Nakaoka S (2014) A global surface ocean fCO2 climatology based on a feed-forward neural network. J Atmos Ocean Tech 31:1838–1849CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Yosuke Iida
    • 1
    • 2
  • Atsushi Kojima
    • 1
    • 2
  • Yusuke Takatani
    • 1
    • 2
  • Toshiya Nakano
    • 1
    • 2
  • Hiroyuki Sugimoto
    • 1
    • 2
  • Takashi Midorikawa
    • 2
  • Masao Ishii
    • 1
    • 2
  1. 1.Global Environment and Marine DepartmentJapan Meteorological AgencyTokyoJapan
  2. 2.Oceanography and Geochemistry Research DepartmentMeteorological Research InstituteTsukubaJapan

Personalised recommendations