Journal of Oceanography

, Volume 71, Issue 6, pp 663–673 | Cite as

A long-term volume transport time series estimated by combining in situ observation and satellite altimeter data in the northern South China Sea

  • Xiao-Hua Zhu
  • Ruixiang Zhao
  • Xinyu Guo
  • Yu Long
  • Yun-Long Ma
  • Xiaopeng Fan
Original Article


We deployed five pressure-recording inverted echo sounders (PIES) along a satellite altimeter track across the continental slope of the northern South China Sea (NSCS) from October 2012 to July 2014, and obtained a time series of volume transport (VTPIES) across the section from their records. Applying the empirical relationship between VTPIES and the satellite altimeter sea surface height anomaly difference across the section, we obtained a time series of volume transport (VTNSCS) over 22 years from 1992 to 2014. The VTNSCS shows a small mean value of −1.6 Sv (1 Sv = 106 m3 s−1) (i.e., toward the southwest), but a significant seasonal reversal and mesoscale eddy induced fluctuations (−11.8 to 19.7 Sv). The monthly mean of VTNSCS over 22 years shows a maximum (3.6 Sv) in July and a minimum (−7.3 Sv) in December. This is the first long time series of volume transport for the NSCS based on in situ data.


Long-term time series of volume transport Pressure-recording inverted echo sounder Gravest empirical mode Satellite altimeter Seasonal variability South China sea 



This study is supported by the National Basic Research Program of China (2011CB403503), the National Natural Science Foundation of China (41276095, 41476020, 41276028, and 41321004), the Scientific Research Fund of SIO under grants JT1402 and JT1207, and the projects of State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography (SOEDZZ1403), and Global Change and Air-Sea Interaction (GASI-03-01-01-02). The Argo data are provided by China Argo Real-time Data Center ( The HYCOM data are downloaded from We thank the crew and participants of the R/V Shiyan-3 for their support during deployment cruise.


  1. Andres M, Park JH, Wimbush M, Zhu XH, Chang KI, Ichikawa H (2008a) Study of the Kuroshio/Ryukyu Current system based on satellite-altimeter and in situ measurements. J Oceanogr 64(6):937–950CrossRefGoogle Scholar
  2. Andres M, Wimbush M, Park JH, Chang KI, Lim BH, Watts DR, Ichikawa H, Teague WJ (2008b) Observations of Kuroshio flow variations in the East China Sea. J Geophys Res 113:C05013. doi: 10.1029/2007JC004200 Google Scholar
  3. Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell 4:55–88CrossRefGoogle Scholar
  4. Chu X, Xue H, Qi Y, Chen G, Mao Q, Wang D, Chai F (2014) An exceptional anticyclonic eddy in the South China Sea in 2010. J Geophys Res Oceans 119:881–897. doi: 10.1002/2013JC009314 CrossRefGoogle Scholar
  5. Donohue KA, Watts DR, Tracey K, Greene AD, Kennelly M (2010) Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. J Atmos Oceanic Technol 27:507–527. doi: 10.1175/2009JTECHO686.1 CrossRefGoogle Scholar
  6. Fang W, Fang G, Shi P, Huang Q, Xie Q (2002) Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. J Geophys Res 107(C11):3202. doi: 10.1029/2002JC001343 CrossRefGoogle Scholar
  7. Fang G, Wang Y, Wei Z, Fang Y, Qiao F, Hu X (2009) Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn Atmos Oceans 47:55–72. doi: 10.1016/j.dynatmoce.2008.09.003 CrossRefGoogle Scholar
  8. Fang G, Susanto RD, Wirasantosa S, Qiao F, Supangat A, Fan B, Wei Z, Sulistiyo B, Li S (2010) Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. J Geophys Res 115:C12020. doi: 10.1029/2010JC006225 CrossRefGoogle Scholar
  9. Fang G, Wang G, Fang Y, Fang W (2012) A review on the South China Sea western boundary current. Acta Oceanol Sin 31(5):1–10. doi: 10.1007/s13131-012-0231-y CrossRefGoogle Scholar
  10. Hsin YC, Wu CR, Chao SY (2012) An updated examination of the Luzon Strait transport. J Geophys Res 117:C03022. doi: 10.1029/2011JC007714 Google Scholar
  11. Hu J, Kawamura H, Li C, Hong H, Jiang Y (2010) Review on current and seawater volume transport through the Taiwan Strait. J Oceanogr 66:591–610CrossRefGoogle Scholar
  12. Imawaki S, Uchida H, Ichikawa H, Fukasawa M, Umatani S, ASUKA Group (2001) Satellite altimeter monitoring the Kuroshio transport south of Japan. Geophys Res Lett 28:17–20CrossRefGoogle Scholar
  13. Kagimoto T, Yamagata T (1997) Seasonal transport variations of the Kuroshio: an OGCM simulation. J Phys Oceanogr 27:403–418CrossRefGoogle Scholar
  14. Liu ZY, Yang HJ, Liu QY (2001) Regional dynamics of seasonal variability of SSH in the South China Sea. J Phys Oceanogr 31:272–284CrossRefGoogle Scholar
  15. Qiu B (1999) Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observation and theory. J Phys Oceanogr 29:2471–2486CrossRefGoogle Scholar
  16. Qu T, Song YT (2009) Mindoro Strait and Sibutu Passage transports estimated from satellite data. Geophys Res Lett 36:L09601. doi: 10.1029/2009GL037314 Google Scholar
  17. Qu T, Du Y, Sasaki H (2006) South China Sea throughflow: a heat and freshwater conveyor. Geophys Res Lett 33:L23617. doi: 10.1029/2006GL028350 CrossRefGoogle Scholar
  18. Wang G, Su J, Chu PC (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett 30(21):2121. doi: 10.1029/2003GL018532 CrossRefGoogle Scholar
  19. Wang D, Liu Q, Huang RX, Du Y, Qu T (2006) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett 33:L14605. doi: 10.1029/2006GL026316 CrossRefGoogle Scholar
  20. Wang D, Wang Q, Zhou W, Cai S, Li L, Hong B (2013) An analysis of the current deflection around Dongsha Islands in the northern South China Sea. J Geophys Res Oceans 118:490–501. doi: 10.1029/2012JC008429 CrossRefGoogle Scholar
  21. Wang Q, Zeng L, Zhou W, Xie Q, Cai S, Yao J, Wang D (2015) Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. J Geophys Res Oceans 120:517–532. doi: 10.1002/2014JC009814 CrossRefGoogle Scholar
  22. Watts DR, Sun C, Rintoul S (2001) A two-dimensional gravest empirical mode determined from hydrographic observations in the Subantarctic Front. J Phys Oceanogr 31:2186–2209. doi: 10.1175/1520-0485(2001)031,2186:ATDGEM.2.0.CO;2 CrossRefGoogle Scholar
  23. Wu CR, Shaw PT, Chao SY (1998) Seasonal and interannual variations in the velocity field of the South China Sea. J Oceanogr 54(4):361–372CrossRefGoogle Scholar
  24. Wyrtki K (1961) Physical oceanography of the Southeast Asian waters, scientific results of marine investigations of the South China Sea and the Gulf of Thailand. NAGA Report. Scripps Inst Oceanogr 2:195 (La Jolla, CA) Google Scholar
  25. Yang Y, Liu CT, Hu JH, Koga M (1999) Taiwan Current (Kuroshio) and impinging eddies. J Oceanogr 55:609–617CrossRefGoogle Scholar
  26. Zhu XH, Han IS, Park JH, Ichikawa H, Murakami K, Kaneko A, Ostrovskii A (2003) The northeastward current southeast of Okinawa Island observed during November 2000 to August 2001. Geophys Res Lett 30(2):1071. doi: 10.1029/2002GL015867 CrossRefGoogle Scholar
  27. Zhu X-H, Ichikawa H, Ichikawa K, Takeuchi K (2004) Volume transport variability southeast of Okinawa Island estimated from satellite altimeter data. J Oceanogr 60:953–962CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Xiao-Hua Zhu
    • 1
    • 3
  • Ruixiang Zhao
    • 1
  • Xinyu Guo
    • 1
    • 2
  • Yu Long
    • 1
  • Yun-Long Ma
    • 1
  • Xiaopeng Fan
    • 1
  1. 1.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouChina
  2. 2.Center for Marine Environmental StudyEhime UniversityMatsuyamaJapan
  3. 3.Ocean CollegeZhejiang UniversityHangzhouChina

Personalised recommendations