Journal of Oceanography

, Volume 71, Issue 4, pp 409–425 | Cite as

Vertical and horizontal structures of the North Pacific subtropical gyre axis

  • Masafumi Kimizuka
  • Fumiaki Kobashi
  • Atsushi Kubokawa
  • Naoto Iwasaka
Original Article
  • 312 Downloads

Abstract

Mean structures of the North Pacific subtropical gyre are investigated using Argo float observations and several wind stress products, with a particular focus on the gyre axis, which is defined as a large-scale boundary between eastward motions on the northern part of the subtropical gyre and westward motions on the southern part. Structures of the gyre axis are different between the regions east and west of about 180°. In the west, the gyre axis is affected by the strong Kuroshio Extension jet, showing discrepancy with features expected from the Sverdrup balance and ventilated thermocline theory. In the east, depth-integrated geostrophic circulation displays the two gyre axes at about 25°N and 30°N in association with a local cyclonic wind stress curl anomaly. It is expected from the Sverdrup balance that the two gyre axes would extend to the west across the subtropical gyre, but the actual geostrophic circulation exhibits only one gyre axis around 30°N to the west. The vertical structure of the subtropical gyre exhibits a remarkable northward shift of the gyre axis with depth in the east, consistent with the southward decrease in the thickness of density layers around the gyre axis, while the northward shift is less obvious in the west, where the gyre axis lies along the southern flank of the Kuroshio Extension. The gyre shift is relatively smaller in the central mode water (CMW) layer due to the horizontal uniformity of the CMW, suggesting a dynamic effect of the CMW on large-scale circulations of the subtropical gyre.

Keywords

North Pacific subtropical gyre Wind-driven circulation Gyre axis Sverdrup balance Ventilated thermocline theory 

Notes

Acknowledgments

Comments and suggestions from the editor and anonymous reviewers helped to greatly improve the manuscript. This study is partially supported by Grants-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan (22106007, 23340139). The MOAA GPV was obtained from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) website. The JRA25 wind stress data was obtained from the Japan Meteorological Agency website, the J-OFURO from the J-OFURO website of Tokai University, the NCEP/NCAR and NCEP/DOE data from the NOAA website, and the MERRA from the NASA website. The authors would like to acknowledge these data providers.

References

  1. Aoki K, Kutsuwada K (2008) Verification of the wind-driven transport in the North Pacific subtropical gyre using gridded wind-stress products. J Oceanogr 64:49–60CrossRefGoogle Scholar
  2. Chelton DB, Mestas-Nuñez AM (1996) The large-scale, wind-driven response of the North Pacific. Int WOCE Newslett 25:3–6Google Scholar
  3. Chen S, Qiu B, Hacker P (2007) Profiling float measurements of the recirculation gyre south of the Kuroshio Extension in May to November 2004. J Geophys Res 112:C05023. doi:10.1029/2006JC004005 Google Scholar
  4. Flament P, Kennan S, Lumpkin R, Sawyer M, Stroup E (1998) The ocean. In: Juvik SP, Juvik JO, Paradise TR (eds) Atlas of Hawai‘i. University of Hawaii Press, pp 82–86Google Scholar
  5. Giglio D, Roemmich D, Gille ST (2012) Wind-driven variability of the subtropical north pacific ocean. J Phys Oceanogr 42:2089–2100CrossRefGoogle Scholar
  6. Hanawa K, Sugimoto S (2004) ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys Res Lett 31:L10303. doi:10.1029/2004GL019904 CrossRefGoogle Scholar
  7. Hautala SL, Roemmich D, Schmitz WJ Jr (1994) Is the North Pacific in Sverdrup balance along 24N? J Geophys Res 99:16041–16052CrossRefGoogle Scholar
  8. Hellerman S, Rosenstein M (1983) Normal monthly wind stress over the World Ocean with error estimates. J Phys Oceanogr 13:1093–1104CrossRefGoogle Scholar
  9. Hosoda S, Xie S-P, Takeuchi K, Nonaka M (2004) Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J Oceanogr 60:865–877CrossRefGoogle Scholar
  10. Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev 8:47–59CrossRefGoogle Scholar
  11. Huang RX, Qiu B (1994) Three-dimensional structure of the wind driven circulation in the subtropical North Pacific. J Phys Oceanogr 24:1608–1622CrossRefGoogle Scholar
  12. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Leetmaa A, Reynolds A, Jenne R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  13. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II Reanalysis (R-2). Bull Am Meteor Soc 83:1631–1643CrossRefGoogle Scholar
  14. Kobashi F, Kubokawa A (2012) Review on North Pacific Subtropical Countercurrents and Subtropical Fronts: role of mode waters in ocean circulation and climate. J Oceanogr. doi:10.1007/s10872-011-0083-7 Google Scholar
  15. Kobashi F, Mitsudera H, Xie S-P (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res 111:C09033. doi:10.1029/2006JC003479 Google Scholar
  16. Kobashi F, Xie S-P, Iwasaka N, Sakamoto TT (2008) Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J Clim 21:5960–5975CrossRefGoogle Scholar
  17. Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29:1314–1333CrossRefGoogle Scholar
  18. Kubokawa A, Inui T (1999) Subtropical countercurrent in an idealized ocean GCM. J Phys Oceanogr 29:1303–1313CrossRefGoogle Scholar
  19. Kubota M, Yokota H, Okamoto T (1995) Mechanism of the seasonal transport variation through the Tokara Strait. J Oceanogr 51:441–458CrossRefGoogle Scholar
  20. Kubota M, Iwasaka N, Kizu S, Konda M, Kutsuwada K (2002) Japanese ocean flux data sets with use of remote sensing observation (J-OFURO). J Oceanogr 58:213–225CrossRefGoogle Scholar
  21. Ladd C, Thompson L (2002) Decadal variability of North Pacific central mode water. J Phys Oceanogr 32:2870–2881CrossRefGoogle Scholar
  22. Luyten JR, Pedlosky J, Stommel H (1983) The ventilated thermocline. J Phys Oceanogr 13:292–309CrossRefGoogle Scholar
  23. Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:436–472Google Scholar
  24. Munk WH (1950) On the wind-driven ocean circulation. J Meteor 7:79–93CrossRefGoogle Scholar
  25. Nakamura H (1996) A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: its distribution and formation. J Oceanogr 52:171–188CrossRefGoogle Scholar
  26. Nakano H, Suginohara N (2002) A series of middepth zonal flows in the Pacific driven by winds. J Phys Oceanogr 32:161–176CrossRefGoogle Scholar
  27. Oka E, Suga T (2005) Differential formation and circulation of North Pacific central mode water. J Phys Oceanogr 35:1997–2011CrossRefGoogle Scholar
  28. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007) The JRA-25 reanalysis. J Meteor Soc Jpn 85:369–432CrossRefGoogle Scholar
  29. Press WH, Teukolsky A, Vettering WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, Cambridge, p 963Google Scholar
  30. Qiu B, Koh DA, Lumpkin C, Flament P (1997) Existence and formation mechanism of the North Hawaiian Ridge current. J Phys Oceanogr 27:431–444CrossRefGoogle Scholar
  31. Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observations of the subtropical mode water evolution from the Kuroshio extension system study. J Phys Oceanogr 36:457–473CrossRefGoogle Scholar
  32. Qiu B, Rudnick DL, Chen S, Kashino Y (2013) Quasistationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys Res Lett 40:2183–2187. doi:10.1002/grl.50394 CrossRefGoogle Scholar
  33. Qu T (2002) Depth distribution of the subtropical gyre in the North Pacific. J Oceanogr 58:525–529CrossRefGoogle Scholar
  34. Reid JL, Arthur RS (1975) Interpretation of maps of geopotential anomaly for deep Pacific Ocean. J Mar Res 33:37–52Google Scholar
  35. Rhines PB, Young WR (1982) A theory of the wind-driven circulation. Part I: mid-ocean gyres. J. Mar. Res. 40:559–596Google Scholar
  36. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G, Bloom S, Chen J, Collins D, Conaty A, Silva AD, Gu W, Joiner J, Koster KD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA:NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648CrossRefGoogle Scholar
  37. Sekine Y, Kutsuwada K (1994) Seasonal variation in volume transport of the Kuroshio South of Japan. J Phys Oceanogr 24:261–272CrossRefGoogle Scholar
  38. Stommel H (1948) The westward intensification of wind-driven ocean currents. Trans Am Geophys Union 29:202–206CrossRefGoogle Scholar
  39. Stommel H, Schott F (1977) The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res 24:325–329CrossRefGoogle Scholar
  40. Suga T, Takei Y, Hanawa K (1997) Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J Phys Oceanogr 27:140–152CrossRefGoogle Scholar
  41. Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34:3–22CrossRefGoogle Scholar
  42. Sverdrup HU (1947) Wind-driven currents of a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc Natl Acad Sci 33:318–326CrossRefGoogle Scholar
  43. Uda M, Hasunuma K (1969) The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Jpn 25:201–210Google Scholar
  44. Xie S-P, Liu WT, Liu Q, Nonaka M (2001) Far-reaching effects of the Hawaiian Islands on the Pacific Ocean–atmosphere system. Science 292:2057–2060CrossRefGoogle Scholar
  45. Xie S-P, Xu L-X, Liu Q, Kobashi F (2011) Dynamical role of mode water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J Clim 24:1212–1225CrossRefGoogle Scholar
  46. Yoshikawa Y, Church JA, Uchida H, White NJ (2004) Near bottom currents and their relation to the transport in the Kuroshio Extension. Geophys Res Lett 31:L16309. doi:10.1029/2004GL020068 CrossRefGoogle Scholar
  47. Young WR, Rhines PB (1982) A theory of the wind-driven circulation. Part II: Gyre with western boundary layers. J Mar Res 40:849–872Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Masafumi Kimizuka
    • 1
  • Fumiaki Kobashi
    • 1
    • 2
  • Atsushi Kubokawa
    • 3
  • Naoto Iwasaka
    • 1
  1. 1.Graduate School of Marine Science and TechnologyTokyo University of Marine Science and TechnologyKoto-KuJapan
  2. 2.Research Institute for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations