Journal of Oceanography

, Volume 71, Issue 5, pp 623–636 | Cite as

Atlantic–Pacific asymmetry of subsurface temperature change and frontal response of the Antarctic Circumpolar Current for the recent three decades

  • Shigeru Aoki
  • Genta Mizuta
  • Hideharu Sasaki
  • Yoshikazu Sasai
  • Stephen R. Rintoul
  • Nathaniel L. Bindoff
Special Section: Original Article “Hot Spots” in the Climate System: New Developments in the Extratropical Ocean-Atmosphere Interaction Research

Abstract

For the 32-year period from 1979 to 2010, trends of surface and subsurface temperature and meridional motion of the current system in the Antarctic Circumpolar Current (ACC) region are studied with in situ observations and an eddy-resolving general circulation model. The observed and simulated surface temperature shows a similar pattern between the Atlantic and Pacific: warming to the north of the Subantarctic/Subtropical Fronts in the Atlantic and of the Subtropical Front in the Pacific and cooling to the south of those fronts. The subsurface temperature trend, again from both observation and model, reveals an asymmetric pattern between the Atlantic and Pacific: subsurface warming is dominant over the whole ACC region in the Atlantic, while both warming and cooling are significant in the Pacific, the former located to the north of the Subantarctic Front and the latter to the south. The model reveals that the ACC has generally shifted poleward in the Atlantic, while it has shifted equatorward around Subantarctic Front and Polar Front in the Pacific. The ACC shift is consistent with the overall subsurface temperature trend. The basin-scale difference of the ACC response can be related to the different regime of the trend in meridional gradient of the zonal wind stress to the north and south of 50–55°S and suggests a coupling of the ACC and overlying westerly on the multi-decadal time scale.

Keywords

Antarctic Circumpolar Current Atlantic Pacific Warming Frontal shift Multi-decadal variability 

Notes

Acknowledgments

We thank Akira Taniguchi for his data handling of OFES. Discussion with Drs. Andy Hogg and Katsuro Katsumata are very helpful in interpreting the results. Comments and suggestions from two anonymous reviewers helped substantially improve this manuscript. This work was supported by Grant-in-Aid for Scientific Research (22106009) of the MEXT of the Japanese Government, by the Cooperative Research Centre program of the Australian Government, through the Antarctic Climate and Ecosystems Cooperative Research Centre and by the Australian Government Department of the Environment, the Bureau of Meteorology and CSIRO through the Australian Climate Change Science Program.

References

  1. Aoki S, Yoritaka M, Masuyama A (2003) Multi-decadal warming of subsurface temperature in the Indian sector of the Southern Ocean. J Geophys Res. doi:10.1029/2000JC000307 Google Scholar
  2. Bajish CC, Aoki S, Taguchi B, Komori N, Kim S-J (2013) Quasi-decadal circumpolar variability of Antarctic sea ice. SOLA 9:32–35. doi:10.2151/sola.2013-008 CrossRefGoogle Scholar
  3. Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1:864–869. doi:10.1038/ngeo362 CrossRefGoogle Scholar
  4. Boyer TP, Levitus S, Antonov JI, Conkright ME, O’Brien T, Stephens C (1998) World Ocean Atlas 1998 Vol. 5: salinity of the Pacific ocean, NOAA Atlas NESDIS 31. U.S. Government Printing Office, WashingtonGoogle Scholar
  5. Cai W (2006) Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys Res Lett 33:L03712. doi:10.1029/2005GL024911 Google Scholar
  6. Cai W, Cowan T, Godfrey S, Wijffels S (2010) Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J Clim 23:197–206CrossRefGoogle Scholar
  7. Fyfe JC (2006) Southern Ocean warming due to human influence. Geophys Res Lett 33:L19701. doi:10.1029/2006GL027247 CrossRefGoogle Scholar
  8. Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophs. Res. Lett. 33:L06701. doi:10.1029/2005GL025332 Google Scholar
  9. Fyfe JC, Saenko OA, Zickfeld K, Eby M, Weaver AJ (2007) The Role of poleward-intensifying winds on Southern Ocean warming. J Clim 20:5391–5400CrossRefGoogle Scholar
  10. Gille S (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277CrossRefGoogle Scholar
  11. Gille S (2008) Decadal-scale temperature trends in the Southern Hemisphere ocean. J Clim 21:4749–4765CrossRefGoogle Scholar
  12. Gillet NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273. doi:10.1126/science.1087440 CrossRefGoogle Scholar
  13. Godfrey JS (1989) A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys Astrophys Fluid Dyn 45:89–112CrossRefGoogle Scholar
  14. Hogg AM, Meredith MP, Blundel JR, Wilson C (2008) Eddy heat flux in the Southern Ocean: response to variable wind forcing. J Clim 21:608–620CrossRefGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Leetmaa A, Reynolds R, Jenne R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  16. Levitus SJ, Antonov I, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GF021592 Google Scholar
  17. Levitus SJ, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106 Google Scholar
  18. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) World Ocean Atlas 2009, vol. 1. In: S Levitus (eds) Temperature, NOAA Atlas NESDIS, vol 68. NOAA, Silver Spring, pp 184Google Scholar
  19. Marshall GJ, Connolley WM (2006) Effect of changing Southern Hemisphere winter sea surface temperatures on Southern Annular Mode strength. Geophys Res Lett 33(33):L17717. doi:10.1029/2006GL026627 CrossRefGoogle Scholar
  20. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H (2004) A fifty-year eddy- resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simulator 1:35–56Google Scholar
  21. Meijers AJ, Bindoff NL, Rintoul SR (2011) Frontal movements and property fluxes: contributions to heat and freshwater trends in the Southern Ocean. J Geophys Res 116:C08024. doi:10.1029/2010JC006832 Google Scholar
  22. Meredith MP, Hogg AM (2006) Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys Res Lett 33:L16608. doi:10.1029/2006GL026499 CrossRefGoogle Scholar
  23. Morrow R, Valladeau G, Sallée JB (2008) Observed subsurface signature of Southern Ocean sea level rise. Prog Oceanogr 77:351–366CrossRefGoogle Scholar
  24. Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, jet streams and midlatitude oceanic fronts, in Earth’s climate: The Ocean-Atmosphere interaction. In: Wang C, Xie S-P, Carton JA (eds) Gophys, Monogr. Ser 147, AGU, pp 329–345Google Scholar
  25. Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2012) Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophs Res Lett. doi:10.1029/2011GL049922 Google Scholar
  26. Orsi AH, Withworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641–673CrossRefGoogle Scholar
  27. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  28. Rintoul SR, Naveira Garabato AC (2013) Dynamics of the Southern Ocean circulation. In: Siedler G, Griffies S, Gould J, Church J (eds) Ocean Circulation and Climate: A 21st Century Perspective. 2nd edn, International Geophysics, 103. GB, Academic Press, Oxford, pp 471–492Google Scholar
  29. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S (2007) Decadal spinup of the South Pacific subtropical gyre. J Phys Oceanogr 37:162–173CrossRefGoogle Scholar
  30. Sallée J-B, Speer K, Morrow R (2008) Response of the Antarctic circumpolar current to atmospheric variability. J Clim 21:3020–3039CrossRefGoogle Scholar
  31. Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and Ocean, chap 10. Springer, New York, pp 157–186Google Scholar
  32. Screen JA, Gillett NP, Stevens DP, Marshall GJ, Roscoe HK (2009) Role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J Clim 22:806–818CrossRefGoogle Scholar
  33. Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic Circumpolar fronts: 1. Mean circumpolar paths. J Geophys Res 114:C11018. doi:10.1029/2008JC005108 CrossRefGoogle Scholar
  34. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 269:895–899CrossRefGoogle Scholar
  35. Wang Z (2013) On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J Geophys Res 118:1070–1086. doi:10.1002/jgrc.20111 CrossRefGoogle Scholar
  36. Wang Z, Kuhlbrodt T, Meredith MP (2011) On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J Geophys Res 116:C08011. doi:10.1029/2010JC006757 Google Scholar
  37. Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Gieseet B (2011) Enhanced warming over the global subtropical western boundary currents. Nat Clim Chang. doi:10.1038/nclimate1353 Google Scholar
  38. Yuan X, Yonekura E (2011) Decadal variability in the southern hemisphere. J Geophys Res 116:D19115. doi:10.1029/2011JD015673 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2015

Authors and Affiliations

  • Shigeru Aoki
    • 1
  • Genta Mizuta
    • 2
  • Hideharu Sasaki
    • 3
  • Yoshikazu Sasai
    • 4
  • Stephen R. Rintoul
    • 5
    • 6
    • 7
    • 8
  • Nathaniel L. Bindoff
    • 5
    • 6
    • 9
    • 10
  1. 1.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  2. 2.Graduate School of Environmental SciencesHokkaido UniversitySapporoJapan
  3. 3.Application LaboratoryJAMSTECYokohamaJapan
  4. 4.Research and Development Center for Global Change, JAMSTECYokohamaJapan
  5. 5.Antarctic Climate and Ecosystems Cooperative Research CentreUniversity of TasmaniaHobartAustralia
  6. 6.CSIROHobartAustralia
  7. 7.Centre for Australian Weather and Climate ResearchHobartAustralia
  8. 8.Wealth from Oceans National Research FlagshipHobartAustralia
  9. 9.University of TasmaniaHobartAustralia
  10. 10.ARC Centre of Excellence for Climate System ScienceHobartAustralia

Personalised recommendations