Journal of Oceanography

, Volume 71, Issue 1, pp 105–114 | Cite as

Impacts of South China Sea throughflow on the mean state and El Niño/Southern Oscillation as revealed by a coupled GCM

  • Tomoki Tozuka
  • Tangdong Qu
  • Toshio Yamagata
Original Article


The South China Sea (SCS) throughflow (SCSTF) enters the SCS from the Luzon Strait and exits it through the straits to the south. Using a coupled general circulation model (CGCM), this study reveals impacts of the SCSTF on the mean state and El Niño/Southern Oscillation (ENSO). It is found that the model’s sea surface temperature becomes cooler in the eastern and far western equatorial Pacific and south of Japan, but significantly warmer in the SCS, when the SCSTF is blocked. The warming in the SCS is likely a result of accumulated surface heat flux which otherwise would be transported out of the SCS by the SCSTF. Furthermore, the dominant period of ENSO is 4 years when the SCSTF is allowed, but it becomes 5 years when the SCSTF is blocked. This is because the meridional extent of zonal wind anomalies becomes broader and the Walker Circulation in the Indian Ocean becomes stronger in the no-SCSTF case. On the other hand, changes in the zonal location of zonal wind anomalies, the phase speed of baroclinic Kelvin waves, the occurrence of westerly wind bursts, and strength of atmospheric feedbacks do not contribute to the difference between the two experiments even though they are known to influence the ENSO period. The climatic importance of the SCSTF has been so far overlooked because of its small volume transport compared with other major currents in the global ocean, but the present work shows for the first time its possible impacts on ENSO.


South China Sea ENSO Coupled general circulation model Walker circulation South China Sea throughflow Indonesian throughflow 



This manuscript benefitted from constructive comments from three anonymous reviewers and discussions with Drs. J. McCreary, S.P. Xie, and S. Kida. We thank the INSTANT project team for kindly providing the mooring data in the Makassar Strait ( The CGCM was run on HITACHI SR11000/J1 of Information Technology Center, the University of Tokyo under the cooperative research with Atmosphere Ocean Research Institute, the University of Tokyo. Wavelet software was provided by C. Torrence and G. Compo, and is available online ( T.T. and T.Y. were supported by Japan Society for Promotion of Science through Grant-in-Aid for Young Scientists (B) 21740341 and Grant-in-Aid for Scientific Research (B) 20340125, respectively. T.Q. was supported by NSF through grant OCE10-29704. School of Ocean and Earth Science and Technology contribution number 9242 and IPRC contribution number IPRC-1094.


  1. An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  2. Behera SK, Luo JJ, Masson S, Rao SA, Sakuma H, Yamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1688–1705CrossRefGoogle Scholar
  3. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  4. Burgers G, Jin FF, van Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi: 10.1029/2005GL022951 CrossRefGoogle Scholar
  5. Cai W, Santoso A, Wang G, Weller E, Wu L, Karumuri A, Masumoto Y, Yamagata T (2014) Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature Clim Change (in press)Google Scholar
  6. Doi T, Tozuka T, Yamagata T (2010a) The Atlantic Meridional Mode and its coupled variability with the Guinea Dome. J Clim 23:455–475CrossRefGoogle Scholar
  7. Doi T, Tozuka T, Yamagata T (2010b) Equivalent forcing depth in tropical oceans. Dyn Atmos Oceans 50:415–423CrossRefGoogle Scholar
  8. Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33:L11701. doi: 10.1029/2006GL025871 CrossRefGoogle Scholar
  9. Du Y, Qu T (2010) Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation. Dyn Atmos Oceans 50:233–256CrossRefGoogle Scholar
  10. Emanuel K (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  11. Fang G, Susanto RD, Wirasantosa S, Qiao F, Supangat A, Fan B, Wei Z, Sulistiyo B, Li S (2010) Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007–2008. J Geophys Res 115:C12020. doi: 10.1029/2010JC006225 CrossRefGoogle Scholar
  12. Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean Dipole. Deep Sea Res II 50:2263–2284CrossRefGoogle Scholar
  13. Gordon AL, Susanto RD, Vranes K (2003) Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425:824–828CrossRefGoogle Scholar
  14. Gordon AL, Susanto RD, Ffield A, Huber BA, Pranowo W, Wirasantosa S (2008) Makassar Strait throughflow, 2004 to 2006. Geophys Res Lett 35:L24605. doi: 10.1029/2008GL036372 CrossRefGoogle Scholar
  15. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science 238:657–659CrossRefGoogle Scholar
  16. Guan Z, Iizuka S, Chiba M, Yamane S, Ashok K, Honda M, Yamagata T (2000) Frontier Atmospheric General Circulation Model version 1.0 (FrAM1.0): Model climatology. Technical Report FTR-1Google Scholar
  17. Hautala SL, Reid JL, Bray N (1996) The distribution and mixing of Pacific water masses in the Indonesian Seas. J Geophys Res 101:12375–12389CrossRefGoogle Scholar
  18. Hibiya T, Nagasawa M, Niwa Y (2006) Global mapping of diapycnal diffusivity in the deep ocean based on the results of expendable current profiler (XCP) surveys. Geophys Res Lett 33:L03611. doi: 10.1029/2005GL025218 Google Scholar
  19. Kida S, Wijffels S (2012) The impact of the Indonesian Throughflow and tidal mixing on the summertime sea surface temperature in the western Indonesian Seas. J Geophys Res 117:C09007. doi: 10.1029/2012JC008162 Google Scholar
  20. Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2010) Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34:891–904CrossRefGoogle Scholar
  21. Levitus S, Boyer TP (1994) World Ocean Atlas. Vol. 4: temperature. NOAA Atlas NESDIS, 4, US Govt. Printing Office, Washington, DCGoogle Scholar
  22. Levitus S, Burgett R, Boyer TP (1994) World Ocean Atlas. Vol. 5: salinity. NOAA Atlas NESDIS, 3, US Govt. Printing Office, Washington, DCGoogle Scholar
  23. Li L, Qu T (2006) Thermohaline circulation in the deep South China Sea basin as inferred from oxygen distributions. J Geophys Res 111:C05017. doi: 10.1029/2005JC003164 Google Scholar
  24. Lukas R, Yamagata T, McCreary JP (1996) Pacific low-latitude western boundary currents and the Indonesian throughflow. J Geophys Res 101:12209–12216CrossRefGoogle Scholar
  25. Luo JJ, Zhang R, Masumoto Y, Jin FF, Lukas R, Yamagata T (2010) Interaction between El Niño and extreme Indian Ocean Dipole. J Clim 23:726–742CrossRefGoogle Scholar
  26. Metzger EJ, Hurlburt HE, Xu X, Shriver JF, Gordon AL, Sprintall J, Susanto RD, van Aken HM (2010) Simulated and observed circulation in the Indonesian Seas: 1/12° global HYCOM and the INSTANT observations. Dyn Atmos Oceans 50:275–300CrossRefGoogle Scholar
  27. North GR, Bell TL, Cahalan RF (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706CrossRefGoogle Scholar
  28. Pacanowski RC, Griffies SM (1999) MOM 3.0 manual. NOAA/GFDLGoogle Scholar
  29. Palmer TN, Shutts GJ, Swinbank R (1986) Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quat J Roy Meteor Soc 112:1001–1039CrossRefGoogle Scholar
  30. Qu T (2000) Upper-layer circulation in the South China Sea. J Phys Oceanogr 30:1450–1460CrossRefGoogle Scholar
  31. Qu T, Kim YY, Yaremchuk M, Tozuka T, Ishida A, Yamagata T (2004) Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J Clim 17:3644–3657CrossRefGoogle Scholar
  32. Qu T, Du Y, Meyers G, Ishida A, Wang D (2005) Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys Res Lett 32:L24609. doi: 10.1029/2005GL024698 CrossRefGoogle Scholar
  33. Qu T, Du Y, Sasaki H (2006) South China Sea throughflow: a heat and freshwater conveyor. Geophys Res Lett 33:L23617. doi: 10.1029/2006GL028350 CrossRefGoogle Scholar
  34. Sakamoto TT, Hasumi H, Ishii M, Emori S, Suzuki T, Nishimura T, Sumi A (2005) Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophys Res Lett 32:L14617. doi: 10.1029/2005GL023384 Google Scholar
  35. Seiki A, Takayabu YN, Yasuda T, Sato N, Takahashi C, Yoneyama K, Shirooka R (2011) Westerly wind bursts and their relationship with ENSO in CMIP3 models. J Geophys Res 116:D03303. doi: 10.1029/2010JD015039 Google Scholar
  36. Slingo A, Slingo JM (1991) Response of the National Center for Atmospheric Research Community Climate Model to improvements in the representation of clouds. J Geophys Res 96:15341–15357CrossRefGoogle Scholar
  37. Song Q, Gordon AL (2004) Significance of the vertical profile of the Indonesian Throughflow to the Indian Ocean. Geophys Res Lett 31:L16307. doi: 10.1029/2004GL020360 CrossRefGoogle Scholar
  38. Sprintall J, Wijffels S, Molcard R, Jaya I (2009) Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. J Geophys Res 114:C07001. doi: 10.1029/2008JC005257 Google Scholar
  39. Susanto RD, Gordon AL (2005) Velocity and transport of the Makassar Strait throughflow. J Geophys Res 110:C01005. doi: 10.1029/2004JC002425 Google Scholar
  40. Takaya K, Nakamura H (2001) A formation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627CrossRefGoogle Scholar
  41. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  42. Tian J, Yang Q, Zhao W (2009) Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr 39:3191–3203CrossRefGoogle Scholar
  43. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  44. Tozuka T, Miyasaka T, Chakraborty A, Mujumdar M, Behera SK, Masumoto Y, Nakamura H, Yamagata T (2006) University of Tokyo Coupled General Circulation Model (UTCM1.0). Ocean-Atmos Res Rep 7:44Google Scholar
  45. Tozuka T, Qu T, Yamagata T (2007a) Dramatic impact of the South China Sea on the Indonesian Throughflow. Geophys Res Lett 34:L12612. doi: 10.1029/2007GL030420 CrossRefGoogle Scholar
  46. Tozuka T, Luo JJ, Masson S, Yamagata T (2007b) Decadal modulations of the Indian Ocean Dipole in the SINTEX-F1 coupled GCM. J Clim 20:2881–2894CrossRefGoogle Scholar
  47. Tozuka T, Qu T, Masumoto Y, Yamagata T (2009) Impacts of the South China Sea Throughflow on seasonal and interannual variations the Indonesian Throughflow. Dyn Atmos Oceans 47:73–85CrossRefGoogle Scholar
  48. Tozuka T, Doi T, Miyasaka T, Keenlyside N, Yamagata T (2011) Key factors in simulating the equatorial Atlantic zonal SST gradient in a coupled GCM. J Geophys Res 116:C06010. doi: 10.1029/2010JC006717 Google Scholar
  49. Tozuka T, Abiodun BJ, Engelbrecht FA (2014a) Impacts of convection schemes on simulating tropical-temperate troughs over southern Africa. Clim Dyn 42:433–451CrossRefGoogle Scholar
  50. Tozuka T, Kataoka T, Yamagata T (2014b) Locally and remotely forced atmospheric circulation anomalies of Ningaloo Niño/Niña. Clim Dyn. doi: 10.1007/s00382-013-2044-x Google Scholar
  51. Viterbo P, Beljaars ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. Res Dep Tech Rep 75Google Scholar
  52. Wang YH, Jan S, Wang DP (2003) Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuar Coast Shelf Sci 57:193–199CrossRefGoogle Scholar
  53. Yamagata T, Masumoto Y (1989) A simple ocean-atmosphere coupled model for the origin of a Warm El Niño Southern Oscillation event. Philos Trans R Soc Lond A 329:225–236CrossRefGoogle Scholar
  54. Yang J, Liu Q, Xie SP, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett. doi: 10.1029/2006GL028571 Google Scholar
  55. Yaremchuk M, McCreary JP, Yu Z, Furue R (2009) The South China Sea throughflow retrieved from climatological data. J Phys Oceanogr 39:753–767CrossRefGoogle Scholar
  56. Yuan C, Tozuka T, Yamagata T (2012) IOD influence on the early winter Tibetan Plateau snow cover: diagnostic analyses and an AGCM simulation. Clim Dyn 39:1643–1660CrossRefGoogle Scholar
  57. Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Wea Rev 115:2262–2278CrossRefGoogle Scholar
  58. Zhuang W, Qu B, Du Y (2013) Low-frequency western Pacific Ocean sea level and circulation changes due to the connectivity of the Philippine Archipelago. J Geophys Res 118:6759–6773CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoBunkyo-KuJapan
  2. 2.International Pacific Research Center, SOESTUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Application LaboratoryJAMSTECYokohamaJapan

Personalised recommendations