Advertisement

Journal of Oceanography

, Volume 70, Issue 4, pp 377–387 | Cite as

Chemical evidence for the origin of the cold water belt along the northeastern coast of Hokkaido

  • Kenshi KumaEmail author
  • Ryohei Sasayama
  • Nanako Hioki
  • Yuichiroh Morita
  • Yutaka Isoda
  • Tohru Hirawake
  • Keiri Imai
  • Takafumi Aramaki
  • Tomohiro Nakamura
  • Jun Nishioka
  • Naoto Ebuchi
Original Article

Abstract

In the southwestern Okhotsk Sea, the cold water belt (CWB) is frequently observed on satellite images offshore of the Soya Warm Current flowing along the northeastern coast of Hokkaido, Japan, during summertime. It has been speculated that the CWB is upwelling cold water that originates from either subsurface water of the Japan Sea off Sakhalin or bottom water of the Okhotsk Sea. Hydrographic and chemical observations (nutrients, humic-type fluorescence intensity, and iron) were conducted in the northern Japan Sea and southwestern Okhotsk Sea in early summer 2011 to clarify the origin of the CWB. Temperature–salinity relationships, vertical distributions of chemical components, profiles of chemical components against density, and the (NO3 + NO2)/PO4 relationship confirm that water in the CWB predominantly originates from Japan Sea subsurface water.

Keywords

Cold water belt Okhotsk Sea Japan Sea Chemical components Hydrographic data 

Notes

Acknowledgments

We thank the scientists, technicians, captain, and crew of the T/S Oshoro-Maru of Hokkaido University for their help with water sampling. We are grateful to two reviewers for their constructive and helpful comments on this work. This study was supported partly by the Grant for Joint Research Program of the Institute of Low Temperature Science, Hokkaido University, and the Environment Research and Technology Development Fund of the Ministry of the Environment, Japan (A-1002).

References

  1. Bruland KW, Rue EL (2001) Analytical methods for the determination of concentrations and speciation of iron. In: Turner DR, Hunter KA (eds) The biogeochemistry of iron in seawater. Wiley, Chichester, pp 255–289Google Scholar
  2. Bruland KW, Orians KJ, Cowen JP (1994) Reactive trace metals in the stratified central North Pacific. Geochim Cosmochim Acta 58:3171–3182CrossRefGoogle Scholar
  3. Chang BX, Devol AH (2009) Seasonal and spatial patterns of sedimentary denitrification rates in the Chukchi Sea. Deep Sea Res II 56:1339–1350CrossRefGoogle Scholar
  4. Danchenkov MA, Aubrey D, Riser SC (1999) Oceanographic feature of Laperouse Strait. In: Proceedings of the second PICES Workshop on the Okhotsk Sea and adjacent area science report, pp 159–171Google Scholar
  5. Fujita S, Kuma K, Ishikawa S, Nishimura S, Nakayama Y, Ushizaka S, Isoda Y, Otosaka S, Aramaki T (2010) Iron distributions in the water column of the Japan Basin and Yamato Basin (Japan Sea). J Geophys Res 115:C12001. doi: 10.1029/2010JC006123 CrossRefGoogle Scholar
  6. Gueguen C, Guo L, Yamamoto-Kawai M, Tanaka N (2007) Colored dissolved organic matter dynamics across the shelf-basin interface in the western Arctic Ocean. J Geophys Res 112:C05038. doi: 10.1029/2006JC003584 Google Scholar
  7. Hase H, Yoon J-H, Koterayama W (1999) The current structure of the Tsushima Warm Current along the Japan Coast. J Oceanogr 55:217–235CrossRefGoogle Scholar
  8. Hayase K, Shinozuka N (1995) Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial Central Pacific. Mar Chem 48:283–290CrossRefGoogle Scholar
  9. Hayase K, Tsubota H, Sunada I, Goda S, Yamazaki H (1988) Vertical distribution of fluorescent organic matter in the North Pacific. Mar Chem 25:373–381CrossRefGoogle Scholar
  10. Homoky B, Severmann S, McManus J, Berelson WM, Riedel TE, Statham PJ, Mills RA (2012) Dissolved oxygen and suspended particles regulate the benthic flux of iron from continental margins. Mar Chem 134–135:59–70CrossRefGoogle Scholar
  11. Horak REA, Whitney H, Shull DH, Mordy CW, Devol AH (2013) The role of sediments on the Bering Sea shelf N cycle: insights from measurements of benthic denitrification and benthic DIN fluxes. Deep Sea Res II 94:95–105CrossRefGoogle Scholar
  12. Ishizu M, Kitade Y, Matsuyama M (2006) Formation mechanism of the cold-water belt formed off the Soya Warm Current. J Oceanogr 62:457–471CrossRefGoogle Scholar
  13. Ishizu M, Kitade Y, Matsuyama M (2008) Characteristics of the cold-water belt formed off Soya Warm Current. J Geophys Res 113:C12010. doi: 10.1029/2008JC004786 CrossRefGoogle Scholar
  14. Isobe A, Ando M, Watanabe T, Senjyu T, Sugihara S, Manda A (2002) Freshwater and temperature transports through the Tsushima-Korea Straits. J Geophys Res 107. doi: 10.1029/2000JC00702
  15. Johnson KS (2007) Developing standards for dissolved iron in seawater. EOS Trans AGU 88(11):131–132CrossRefGoogle Scholar
  16. Johnson KS, Elrod VA, Fitzwater SE, Plant JN, Chavez FP, Tanner SJ, Gordon RM, Westphal DL, Perry KD, Wu J, Karl DM (2003) Surface ocean–lower atmosphere interactions in the Northeast Pacific Ocean Gyre: aerosols, iron, and the ecosystem response. Global Biogeochem Cycles 17:1063. doi: 10.1029/2002GB002004 CrossRefGoogle Scholar
  17. Kitayama S, Kuma K, Manabe E, Sugie K, Takata H, Isoda Y, Toya K, Saitoh S, Takagi S, Kamei Y, Sakaoka K (2009) Controls on iron distributions in the deep water column of the North Pacific Ocean: iron(III) hydroxide solubility and marine humic-type dissolved organic matter. J Geophys Res 114:C08019. doi: 10.1029/2008JC004754 Google Scholar
  18. Lohan MC, Bruland KW (2008) Elevated Fe(II) and dissolved Fe in hypoxic shelf waters off Oregon and Washington: an enhanced source of iron to coastal upwelling regimes. Environ Sci Technol 42:6462–6468CrossRefGoogle Scholar
  19. Matsuyama M, Wadaka M, Abe T, Aota M, Koike Y (2006) Current structure and volume transport of the Soya Warm Current in summer. J Oceanogr 62:197–205CrossRefGoogle Scholar
  20. Mitsudera H, Uchimoto K, Nakamura T (2011) Rotating stratified barotropic flow over topography: mechanisms of the cold belt formation off the Soya Warm Current along the northeastern coast of Hokkaido. J Phys Oceanogr 41:2120–2136CrossRefGoogle Scholar
  21. Mopper K, Schultz CA (1993) Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Mar Chem 41:229–238CrossRefGoogle Scholar
  22. Nakata A, Tanaka I, Yagi H, Kantakov GA, Samotov D (1996) Origin of water in the cold water belt appearing offshore side of the Soya Warm Current near La Perouse Strait (the Soya Strait): abstracts of the fifth PICES annual meeting, Nanaimo, Canada, p 42Google Scholar
  23. Nakayama Y, Fujita S, Kuma K, Shimada K (2011) Iron and humic-type fluorescent dissolved organic matter in the Chukchi Sea and Canada Basin of the western Arctic Ocean. J Geophys Res 116:C07031. doi: 10.1029/2010JC006779 Google Scholar
  24. Nishimura S, Kuma K, Ishikawa S, Omata A, Saitoh S (2012) Iron, nutrients, humic-type fluorescent dissolved organic matter in the northern Bering Sea shelf, Bering Strait, and Chukchi Sea. J Geophys Res 117:C02025. doi: 10.1029/2011JC007355 Google Scholar
  25. Nishioka J, Nakatsuka T, Watanabe YW, Yasuda I, Kuma K, Ogawa H, Ebuchi N, Scherbinin A, Volkov YN, Shiraiwa T, Wakatsuchi M (2013) Intensive mixing along an Island chain controls oceanic biogeochemical cycles. Global Biogeochem Cycles 27:920–929. doi: 10.1002/gbc.20088 CrossRefGoogle Scholar
  26. Obata H, Karatani H, Nakayama E (1993) Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528CrossRefGoogle Scholar
  27. Ohshima KI (1994) The flow system in the Japan Sea caused by a sea-level difference through shallow strait. J Geophys Res 99:9925–9940CrossRefGoogle Scholar
  28. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, p 173Google Scholar
  29. Saitoh Y, Kuma K, Isoda Y, Kuroda H, Matsuura H, Wagawa T, Takata H, Kobayashi N, Nagao S, Nakatsuka T (2008) Processes influencing iron distribution in the coastal waters of the Tsugaru Strait, Japan. J Oceanogr 64:815–830CrossRefGoogle Scholar
  30. Takata H, Kuma K, Iwade S, Isoda Y, Kuroda H, Senjyu T (2005) Comparative vertical distributions of iron in the Japan Sea, the Bering Sea and the western North Pacific Ocean. J Geophys Res 110:C07004. doi: 10.1029/2004J002783 Google Scholar
  31. Takata H, Kuma K, Isoda Y, Otosaka S, Senjyu T, Minagawa M (2008) Iron in the Japan Sea and its implications for the physical processes in deep water. Geophys Res Lett 35:L02606. doi: 10.1029/2007GL031794 CrossRefGoogle Scholar
  32. Tanaka T, Guo L, Deal C, Tanaka N, Whitledge T, Murata A (2004) N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: influence of sedimentary denitrification. Cont Shelf Res 24:1271–1283CrossRefGoogle Scholar
  33. Tsujino H, Nakano H, Motoi T (2008) Mechanism of currents through the straits of the Japan Sea: mean state and seasonal variation. J Oceanogr 64:141–161CrossRefGoogle Scholar
  34. Watanabe T, Katoh O, Yamada H (2006) Structure of the Tsushima Warm Current in the northeastern Japan Sea. J Oceanogr 62:527–538CrossRefGoogle Scholar
  35. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2008) Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ 18O, and nutrients. J Geophys Res 113:C01007. doi: 10.1029/2006JC003858 Google Scholar
  36. Yoshikawa C, Nakatsuka T, Wakatsuchi M (2006) Distribution of N* in the Sea of Okhotsk and its use as a biogeochemical tracer of the Okhotsk Sea intermediate water formation process. J Mar Syst 63:49–62CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2014

Authors and Affiliations

  • Kenshi Kuma
    • 1
    Email author
  • Ryohei Sasayama
    • 1
  • Nanako Hioki
    • 1
  • Yuichiroh Morita
    • 1
  • Yutaka Isoda
    • 1
  • Tohru Hirawake
    • 1
  • Keiri Imai
    • 1
  • Takafumi Aramaki
    • 2
  • Tomohiro Nakamura
    • 3
  • Jun Nishioka
    • 3
  • Naoto Ebuchi
    • 3
  1. 1.Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.National Institute for Environmental StudiesTsukubaJapan
  3. 3.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan

Personalised recommendations