Journal of Oceanography

, Volume 70, Issue 4, pp 367–375 | Cite as

ENSO indices from sea surface salinity observed by Aquarius and Argo

Original Article

Abstract

Analysis of the first 26 months of data from the Aquarius satellite confirms the existence of a sharp sea surface salinity (SSS) front along the equator in the western equatorial Pacific. Following several earlier studies, we use the longitudinal location of the 34.8-psu isohaline as an index, termed Niño-S34.8, to measure the zonal displacement of the SSS front and consequently the eastern edge of the western Pacific warm pool. The on-going collection of the Array for Real-time Geostrophic Oceanography (ARGO) program data shows high correlations between Niño-S34.8 and the existing indices of El Niño, suggesting its potential important role in ENSO evolution. Further analysis of the ARGO data reveals that SSS variability in the southeastern tropical Pacific is crucial to identify the type of El Niño. A new SSS index, termed the southeastern Pacific SSS index (SEPSI), is defined based on the SSS variability in the region (0°–10°S, 150°–90°W). The SEPSI is highly correlated with the El Niño Modoki index, as well as the Trans-Niño index, introduced by previous studies. It has large positive anomalies during central Pacific El Niño or El Niño Modoki events, as a result of enhanced zonal sea surface temperature gradients between the central and eastern tropical Pacific, and can be used to characterize the type of El Niño. The processes that possibly control these SSS indices are also discussed.

Keywords

Sea surface salinity ENSO indices Equatorial Pacific Argo data Aquarius ocean salinity 

References

  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114:C06023. doi:10.1029/2008JC005187 Google Scholar
  3. Delcroix T (1998) Observed surface oceanic and atmospheric variability in the tropical Pacific at seasonal and ENSO timescales: a tentative overview. J Geophys Res 103:18611–18633. doi:10.1029/98JC00814 CrossRefGoogle Scholar
  4. Delcroix T, Alory G, Cravatte S, Corrège T, McPhaden M (2011) A gridded sea surface salinity data set for the tropical Pacific with sample applications (1950–2008). Deep Sea Res Part I 58(1):38–48. doi:10.1016/j.dsr.2010.11.002 CrossRefGoogle Scholar
  5. Delcroix T, McPhaden MJ (2002) Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J Geophys Res 107:8002. doi:10.1029/2001JC000862 CrossRefGoogle Scholar
  6. Delcroix T, Picaut J (1998) Zonal displacement of the western equatorial Pacific “fresh pool”. J Geophys Res 103:1087–1098. doi:10.1029/97JC01912 CrossRefGoogle Scholar
  7. Donguy JR (1994) Surface and subsurface salinity in the tropical Pacific Ocean: relations with climate. Prog Oceanogr 34:45–78CrossRefGoogle Scholar
  8. Eldin G, Rodier M, Radenac M-H (1997) Physical and nutrient variability in the upper equatorial Pacific associated with westerly wind forcing and wave activity in October 1994. Deep Sea Res Part II 44:1783–1800CrossRefGoogle Scholar
  9. Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  10. Kalnay E, Coauthors (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–371Google Scholar
  11. Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  12. Kuroda Y, McPhaden MJ (1993) Variability in the western equatorial Pacific Ocean during JAPACS cruises in 1989 and 1990. J Geophys Res 98:4747–4759CrossRefGoogle Scholar
  13. Lagerloef G, Coauthors (2013) Aquarius salinity validation analysis; data version 2.0. Aquarius project document, AQ-014-PS-0016, p 36Google Scholar
  14. Lagerloef G, Colomb FR, Le Vine D, Wentz F, Yueh S, Ruf C, Lilly J, Gunn J, Chao Y, deCharon A, Feldman G, Swift C (2008) The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge. Oceanography 21:68–81CrossRefGoogle Scholar
  15. Maes C (2008) On the ocean salinity stratification observed at the eastern edge of the equatorial Pacific warm pool. J Geophys Res 113:C03027. doi:10.1029/2007JC004297 Google Scholar
  16. Maes C, Picaut J, Kuroda Y, Ando K (2004) Characteristics of the convergence zone at the eastern edge of the Pacific warm pool. Geophys Res Lett 31:L11304. doi:10.1029/2004GL019867 CrossRefGoogle Scholar
  17. Mignot J, Frankignoul C (2004) Interannual to interdecadal variability of sea surface salinity in the Atlantic and its link to the atmosphere in a coupled model. J Geophys Res 109(C04005):14. doi:10.1029/2003JC002005 Google Scholar
  18. Picaut J, Masia F, du Penhoat Y (1997) An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666CrossRefGoogle Scholar
  19. Picaut J, Ioualalen M, Delcroix T, Masia F, Murtugudde R, Vialard J (2001) The oceanic zone of convergence on the eastern edge of the Pacific warm pool: a synthesis of results and implications for El Niño Southern Oscillation and biogeochemical phenomena. J Geophys Res 106:2363–2386. doi:10.1029/2000JC900141 CrossRefGoogle Scholar
  20. Qu T, Song YT, Maes C (2014) Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. J Geophys Res 119. doi:10.1002/2013JC009375
  21. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384. doi:10.1175/1520-0493(1982).110<0354:VITSST>2.0.CO;2 CrossRefGoogle Scholar
  22. Rodier M, Eldin G, Le Borgne R (2000) The western boundary of the equatorial Pacific upwelling: some consequences of climatic variability on hydrological and planktonic properties. J Oceanogr 56:463–471CrossRefGoogle Scholar
  23. Singh A, Delcroix T, Cravatte S (2011) Contrasting the flavors of El Niño and Southern Oscillation using sea surface salinity observations. J Geophys Res 116:C06016. doi:10.1029/2010JC006862 Google Scholar
  24. Spall MA (1993) Variability of sea surface salinity in stochastically forced systems. Clim Dyn 8:151–160CrossRefGoogle Scholar
  25. Suarez MJ, Schopf PS (1988) A delayed oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  26. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364 CrossRefGoogle Scholar
  27. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777. doi:10.1175/1520-0477(1997).078<2771:TDOENO>2.0.CO;2 CrossRefGoogle Scholar
  28. Trenberth K, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701CrossRefGoogle Scholar
  29. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782CrossRefGoogle Scholar
  30. Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Nino Modoki on droughts/floods in the Pacific Rim during boreal summer. Clim Dyn 29:113–129. doi:10.1007/s00382-007-0234-0 CrossRefGoogle Scholar
  31. Yu J-Y, Kao H-Y (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. doi:10.1029/2006JD007654 Google Scholar
  32. Yu J-Y, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi:10.1029/2012GL052483 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.International Pacific Research Center, SOESTUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations