Advertisement

Journal of Oceanography

, Volume 70, Issue 1, pp 25–34 | Cite as

Nutricline shoaling in the eastern Pacific warm pool during the last two glacial maxima

  • Hasrizal Bin ShaariEmail author
  • Masanobu Yamamoto
  • Tomohisa Irino
  • Tadamichi Oba
Original Article

Abstract

Isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) and alkenones were analyzed in sediment samples retrieved from Ocean Drilling Program Site 1241 covering the last 150000 years to understand the hydrological evolution of the eastern Pacific warm pool (EPWP). GDGT and alkenone concentrations showed higher values in marine isotope stage (MIS)-2 and MIS-6, which suggests the enhancement of primary production at glacial maxima. \( {\text{TEX}}_{86}^{\text{H}} \)- and \( U_{ 3 7^\prime }^{\text{K}} \)-derived temperature depicted different temperature evolutions. \( U_{ 3 7^\prime }^{\text{K}} \)-derived temperature was marked by small variation during the glacial–interglacial cycles, whereas \( {\text{TEX}}_{86}^{\text{H}} \)-derived temperature showed pronounced glacial–interglacial variation that was similar to Mg/Ca-derived temperature records from nearby cores in the EPWP. Given that enhanced primary production during glacial maxima suggests nutricline shoaling, unchanged \( U_{ 3 7^\prime }^{\text{K}} \) over glacial–interglacial cycles can be interpreted as the shift of alkenone production depth. \( {\text{TEX}}_{86}^{\text{H}} \) seems not to be influenced by glacial–interglacial changes in nutricline depths, recording an integrated temperature in surface and thermocline water. The shallow nutricline in the EPWP during glacial maxima most likely reflected the intense formation of Antarctic intermediate water.

Keywords

Nutricline SST TEX86H U37′K The eastern Pacific warm pool Glacial–interglacial cycles 

Notes

Acknowledgments

The Ocean Drilling Program provided the samples used in this study. We thank Keiji Horikawa for providing us \( U_{ 3 7^\prime }^{\text{K}} \) data from core HY04. We also thank Tatsufumi Okino and Keiko Ohnishi for their analytical assistance.

References

  1. Bentaleb I, Fontugne M, Beaufort L (2002) Long-chain alkenones and \( U_{ 3 7^\prime }^{\text{K}} \) variability along a south-north transect in the western Pacific Ocean. Global Planet Change 34:173–183Google Scholar
  2. Benway HM, Mix AC (2004) Oxygen isotopes, upper-ocean salinity, and precipitation sources in the eastern tropical Pacific. Earth Planet Sci Lett 224(3–4):493–507CrossRefGoogle Scholar
  3. Benway HM, Mix AC, Haley BA, Klinkhammer GP (2006) Eastern Pacific warm pool paleosalinity and climate variability: 0–30 kyr. Paleoceanography 21:PA3008CrossRefGoogle Scholar
  4. Bishop JKB, Stephen JC, Wiebe PH (1986) Particulate matter distributions, chemistry and flux in the Panama Basin: response to environmental forcing. Prog Oceanogr 17:1–59CrossRefGoogle Scholar
  5. Brink KH, Halpern D, Huyer A, Smith RL (1983) The physical environment of the Peruvian upwelling system. Prog Oceanogr 12:285–305CrossRefGoogle Scholar
  6. Chavez FP, Barber RT (1987) An estimate of new production in the equatorial Pacific. Deep Sea Res 34:1229–1243CrossRefGoogle Scholar
  7. Chavez FP, Messie M, Pennington JT (2011) Marine primary production in relation to climate variability and change. Annu Rev Mar Sci 3:227–260CrossRefGoogle Scholar
  8. Conte MH, Sicre M-A, Rühlemann C, Weber JC, Schulte S, Schulz-Bull D, Blanz T (2006) Global temperature calibration of the alkenone unsaturation index (\( U_{ 3 7^\prime }^{\text{K}} \)) in surface waters and comparison with surface sediments. Geochem Geophys Geosyst 7:Q02005Google Scholar
  9. Cortés MY, Bollmann J, Thierstein HR (2001) Coccolithophore ecology at the HOT station ALOHA, Hawaii. Deep Sea Res II 48:1957–1981CrossRefGoogle Scholar
  10. Drijfhout SS, Donners J, de Ruijter WPM (2005) The origin of Intermediate and Subpolar Mode Waters crossing the Atlantic equator in OCCAM. Geophys Res Lett 32(6):L06602CrossRefGoogle Scholar
  11. Dubois N, Kienast M, Normandeau C, Herbert TD (2009) Eastern equatorial Pacific cold tongue during the last glacial maximum as seen from alkenone paleothermometry. Paleoceanography 24:PA4207CrossRefGoogle Scholar
  12. Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):143–180CrossRefGoogle Scholar
  13. Forsbergh BD (1969) On the climatology, oceanography and fisheries of the Panama Bight. Bull Inter Am Trop Tuna Comm 14:49–259Google Scholar
  14. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688CrossRefGoogle Scholar
  15. Groeneveld J, Steph S, Tiedemann R, Garbe-Schönberg D, Nürnberg D, Sturm A (2006) Pliocene development of east-Pacific hydrology as revealed by Mg/Ca analyses on the planktic foraminifer Globigerinoides sacculifer. Proc ODP Sci Results 202:1–27Google Scholar
  16. Hagino K, Okada H, Matsuoka H (2000) Spatial dynamics of coccolithophore assemblage in the Equatorial Western-Central Pacific Ocean. Mar Micropaleontol 39:53–57CrossRefGoogle Scholar
  17. Ho SL, Yamamoto M, Mollenhauer G, Minagawa M (2011) Core top TEX86 values in the south and equatorial Pacific. Org Geochem 42:94–99CrossRefGoogle Scholar
  18. Honjo S (1982) Seasonality and interaction of biogenic and lithogenic particulate flux at Panama Basin. Science 218:883–884CrossRefGoogle Scholar
  19. Hopmans EC, Schouten S, Pancost R, van der Meer MTJ, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589CrossRefGoogle Scholar
  20. Hopmans EC, Weijers JWH, Schefuß E, Herfort L, Sinninghe Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116CrossRefGoogle Scholar
  21. Horikawa K (2006) Response of nitrogen cycling to climate-related oceanographic changes during the last glacial–interglacial cycle: a contrastive study between the eastern and western equatorial Pacific. Dissertation, Hokkaido UniversityGoogle Scholar
  22. Horikawa K, Minagawa M, Murayama M, Kato Y, Asahi H (2006) Spatial and temporal sea-surface temperatures in the eastern equatorial Pacific over the past 150 kyr. Geophys Res Lett 33:L13605CrossRefGoogle Scholar
  23. Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041Google Scholar
  24. Kamikuri S, Motoyama I, Nishi H, Iwai M (2009a) Neogene radiolarian biostratigraphy and faunal evolution of ODP Sites 845 and 1241, eastern equatorial Pacific. Acta Palaeontol Pol 54(4):713–742CrossRefGoogle Scholar
  25. Kamikuri S, Motoyama I, Nishi H, Iwai M (2009b) Evolution of eastern Pacific warm pool and upwelling processes since the middle Miocene based on analysis of radiolarian assemblages: response to Indonesian and central American seaways. Palaeogeogr Palaeoclimatol Palaeoecol 280(3–4):469–479CrossRefGoogle Scholar
  26. Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217CrossRefGoogle Scholar
  27. Kienast M, MacIntyre G, Dubois N, Higginson S, Normandeau C, Chazen CR (2012) Alkenone unsaturation in surface sediments from the eastern equatorial Pacific: implications for SST reconstructions. Paleoceanography 27:PA1210CrossRefGoogle Scholar
  28. Kim JH, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koc N, Hopmans EC, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeol isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654CrossRefGoogle Scholar
  29. Koutavas A, Lynch-Stieglitz J (2003) Glacial–interglacial dynamics of the eastern equatorial Pacific cold tongue-ITCZ system reconstructed from oxygen isotope records. Paleoceanography 18:1089CrossRefGoogle Scholar
  30. Koutavas A, Lynch-Stieglitz J (2005) Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: regional perspective and global context. In: Bradley R, Diaz H (eds) The Hadley circulation: present past and future. Springer, Berlin, pp 347–369Google Scholar
  31. Koutavas A, Sachs JP (2008) Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry. Paleoceanography 23:PA4205CrossRefGoogle Scholar
  32. Lea DW, Pak DK, Spero HJ (2000) Climate impact of late quaternary equatorial Pacific sea surface temperature variations. Science 289:1719–1724CrossRefGoogle Scholar
  33. Leduc G, Schneider RR, Kim JH, Lohmann G (2010) Holocene and Eemian Sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat Sci Rev 29(7–8):989–1004CrossRefGoogle Scholar
  34. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003Google Scholar
  35. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) In: Levitus S (ed) World ocean atlas 2009, 1. Temperature, NOAA atlas NESDIS 68. US Government Printing Office, Washington, DC, pp 184Google Scholar
  36. Loubere P (1999) A multiproxy reconstruction of biological productivity and oceanography in the eastern Pacific for the past 30,000 years. Mar Micropaleontol 37:173–198CrossRefGoogle Scholar
  37. Marra J, Wiebe PH, Bishop JKB, Stepien JC (1987) Primary production and grazing in the plankton of the Panama Bight. Bull Mar Sci 40:255–270Google Scholar
  38. Matsumoto K, Oba T, Lynch-Stieglitz J, Yamamoto H (2002) Interior hydrography and circulation of the glacial Pacific Ocean. Quat Sci Rev 21:1693–1704CrossRefGoogle Scholar
  39. McCartney MS (1977) Subantarctic mode water. In: Angel M (ed) A voyage of discovery. Pergamon, Oxford, pp 103–119Google Scholar
  40. McGee D, Marcantonio F, Lynch-Stieglitz J (2007) Deglacial changes in dust flux into the eastern equatorial Pacific. Earth Planet Sci Lett 257:215–230CrossRefGoogle Scholar
  41. Mix AC et al (2003) Chapter 12, Site 1241. Proc ODP Initial Rep 202:101Google Scholar
  42. Muratli JM, Chase Z, Mix AC, McManus J (2010) Increased glacial-age ventilation of the Chilean margin of Antarctic intermediate water. Nat Geosci 3:23–26CrossRefGoogle Scholar
  43. Nameroff TJ, Calvert SE, Murray JW (2004) Glacial–interglacial variability in the eastern tropical North Pacific oxygen minimum zone recorded by redox-sensitive trace metals. Paleoceanography 19(1):PA1010CrossRefGoogle Scholar
  44. Oba T, Murayama M (2004) Sea surface temperature and salinity changes in the northwest Pacific since the last glacial maximum. J Quat Sci 19(4):335–346CrossRefGoogle Scholar
  45. Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Res 20:355–374Google Scholar
  46. Pahnke K, Zahn R (2005) Southern hemisphere water mass conversion linked to North Atlantic climate variability. Science 307:1741–1746CrossRefGoogle Scholar
  47. Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. Eos Transaction AGU 77:379CrossRefGoogle Scholar
  48. Peeters FJC, Brummer G-JA, Ganssen G (2002) The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NW Arabian Sea. Glob Planet Change 34:269–291CrossRefGoogle Scholar
  49. Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69(2–4):285–317CrossRefGoogle Scholar
  50. Pierrehumbert RT (2000) Climate change and the Tropical Pacific: the sleeping dragon wakes. Proc Nat Acad Sci 97:1355–1358CrossRefGoogle Scholar
  51. Pisias NG, Mix AC (1997) Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: evidence from Radiolaria microfossils. Paleoceanography 12:381–393CrossRefGoogle Scholar
  52. Prahl FG, Muehlhausen LA, Zahnke DL (1988) Further evaluation of long chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310CrossRefGoogle Scholar
  53. Reid FMH (1980) Coccolithophorids of the North Pacific Central Gyre with notes on their vertical and seasonal distribution. Micropaleontology 26:151–176CrossRefGoogle Scholar
  54. Rincon-Martínez D, Lamy F, Contreras S, Leduc G, Bard E, Saukel C, Blaz T, Mackensen A, Tiedemann R (2010) More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and Intertropical Convergence Zone in the eastern equatorial Pacific. Paleoceanography 25:PA2210CrossRefGoogle Scholar
  55. Rühlemann C, Butzin M (2006) Alkenone temperature anomalies in the Brazil–Malvinas Confluence area caused by lateral advection of suspended particulate material. Geochem Geophys Geosys 7:Q10015CrossRefGoogle Scholar
  56. Sagawa T, Yokoyama Y, Ikehara M, Kuwae M (2012) Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeogra Palaeoclimatol Palaeoecol 346–347:120–129CrossRefGoogle Scholar
  57. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new organic proxy for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  58. Schouten S, Hudget C, Hopmans EC, Kienhuis MVM, Sinninghe Damsté JS (2007) Analytical methodology for TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944CrossRefGoogle Scholar
  59. Seki O, Foster GL, Schmidt DN, Mackenden A, Kawamura K, Pancost RD (2010) Alkenone and boron-based Pliocene pCO2 records. Earth Planet Sci Lett 292:201–211CrossRefGoogle Scholar
  60. Seki O, Schmidt DN, Schouten S, Hopmans EC, Sinninghe Damsté JS, Pancost RD (2012) Paleoceanographic changes in the eastern equatorial Pacific over the last 10 Myr. Paleoceanography 27:PA3224CrossRefGoogle Scholar
  61. Steger JM, Collins CA, Chu PC (1998) Circulation in the Archipielago de Colon (Galápagos Islands). Deep Sea Res II 45:1093–1114CrossRefGoogle Scholar
  62. Steinmetz JC (1991) Calcareous nannoplankton biocoenosis: sediment trap studies in the Equatorial Atlantic, Central Pacific and Panama Basin. In: Honjo S (ed) Ocean biocoenosis series 1. Woods Hole Oceanography Institute, Woods HoleGoogle Scholar
  63. Steph S, Tiedemann R, Groeneveld J, Sturm A, Nürnberg D (2006) Pliocene changes in tropical east Pacific upper ocean stratification: Response to tropical gateways? Proc ODP Initial Rep 202:1–51Google Scholar
  64. Steph S, Tiedemann R, Prange M, Groeneveld J, Schulz M, Timmermann A, Nürnberg D, Rühlemann C, Saukel C, Haug GH (2010) Early Pliocene increase in thermohaline overturning: a precondition for the development of the modern equatorial Pacific cold tongue. Paleoceanography 25:PA2202CrossRefGoogle Scholar
  65. Taft BA (1963) Distribution of salinity and dissolved oxygen on surfaces of uniform potential specific volume in the south Atlantic, south Pacific and Indian oceans. J Mar Res 21:129–146Google Scholar
  66. Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography, 6th edn. Elsevier, Boston, p 560Google Scholar
  67. Thunell RC, Reynolds LA (1984) Sedimentation of planktonic foraminifera: seasonal changes in species flux in the Panama Basin. Micropaleontology 30:243–262CrossRefGoogle Scholar
  68. Watanabe T, Winter A, Oba T (2001) Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratio in corals. Mar Geol 173:21–35CrossRefGoogle Scholar
  69. Weijers JWH, Schouten S, Spaargaren OC, Sinninghe Damsté JS (2006) Occurrence and distribution of tetraether membrane in soils: implications for the use of the BIT index and the TEX86 SST proxy. Org Geochem 37:1680–1693CrossRefGoogle Scholar
  70. Wyrtki K (1967) Circulation and water masses in the eastern equatorial Pacific Ocean. Int J Oceanol Limnol 1:117–147Google Scholar
  71. Xie RC, Marcantonio F (2012) Deglacial dust provenance changes in the eastern equatorial Pacific and implications for ITCZ movement. Earth Planet Sci Lett 317–318:386–395CrossRefGoogle Scholar
  72. Yamamoto M, Shiraiwa Y, Inouye I (2000) Physiological responses of lipids in Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status and their implications for alkenone paleothermometry. Org Geochem 31:799–811CrossRefGoogle Scholar
  73. Yamamoto M, Okino T, Sugisaki S, Sakamoto T (2008) Late Pleistocene changes in terrestrial biomarkers in sediments from the central Arctic Ocean. Org Geochem 39:754–763CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2013

Authors and Affiliations

  • Hasrizal Bin Shaari
    • 1
    • 3
    Email author
  • Masanobu Yamamoto
    • 1
    • 2
  • Tomohisa Irino
    • 1
    • 2
  • Tadamichi Oba
    • 2
  1. 1.Graduate School of Environmental ScienceHokkaido UniversitySapporoJapan
  2. 2.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  3. 3.Faculty of Maritime Studies and Marine ScienceUniversity Malaysia TerengganuKuala TerengganuMalaysia

Personalised recommendations