Advertisement

Journal of Oceanography

, Volume 68, Issue 6, pp 869–886 | Cite as

A new climatology of the Okhotsk Sea derived from the FERHRI database

  • Hiroki UeharaEmail author
  • Andrey A. Kruts
  • Yuriy N. Volkov
  • Tomohiro Nakamura
  • Tsuneo Ono
  • Humio Mitsudera
Original Article

Abstract

This paper introduces a new hydrographic climatology of the Okhotsk Sea; this climatology was constructed from the Far Eastern Regional Hydrometeorological Research Institute (FERHRI) database. The FERHRI database has a volume of data three to five times larger than the data used in previous studies because unpublished Russian observation data have been included in the FERHRI database. After removing erroneous data from the database by pertinent quality control methods, the climatology for 1/4° × 1/4° grids is produced by applying objective analysis procedures. Features similar to those in previous studies are seen in the intermediate layers in the Okhotsk Sea, whereas our climatology provides values that fill in gaps in previous climatologies. It is obvious from the monthly climatologies that temperature and salinity distributions evolve in accordance with seasonal variations in the Eastern Sakhalin Current and inflow from the North Pacific. We also reconstructed climatologies for the winter mixed layer and dense shelf water from data obtained from the temperature minimum waters identified as the remnants of these two layers. Free access to the 1° × 1° versions of all climatologies constructed in this study is available through the website.

Keywords

Okhotsk Sea Hydrographic climatology Russian data Intermediate layer Temperature minimum water 

Notes

Acknowledgments

The authors gratefully acknowledge valuable discussions on several points in this study with members of the Ocean and Sea Ice Dynamics Group, Atmosphere–Ocean Interaction Research Group, and Pan-Okhotsk Research Center at Institute of Low Temperature Science, Hokkaido University. The comments of Prof. T. Hibiya and two anonymous reviewers were extremely helpful in the revisions of the manuscript. All figures are drawn by Generic Mapping Tool (GMT). NOAA OI SST v2 is provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their website at http://www.esrl.noaa.gov/psd. This study is supported by New Energy and Industrial Technology Development (NEDO), Grant-in-Aid for Scientific Research on Innovative Areas, and JSPS KAKENHI Grant Number 24510004.

References

  1. Alfultis MA, Martin S (1987) Satellite passive microwave studies of the Sea of Okhotsk ice cover and its relation to oceanic processes. J Geophys Res 92:13013–13028CrossRefGoogle Scholar
  2. Barnes SL (1964) A technique for maximizing details in numerical weather map analysis. J Appl Meteorol 3:396–409CrossRefGoogle Scholar
  3. Boyer TP, Antonov JI, Garcia HE, Johnson DR, Locarnini RA, Mishonov AV, Pitcher MT, Baranova OK, Smolyar IV (2006) World Ocean Database 2005, Chapter 1: Introduction. In: Levitus S (ed) NODC Atlas NESDIS 60. US Government Printing Office, Washington, DCGoogle Scholar
  4. Boyer TP, Antonov JI, Baranova OK, Garcia HE, Johnson DR, Locarnini RA, Mishonov MA, O’Brien TD, Seidov D, Smolyar IV, Zweng MM (2009) World Ocean Database, 2009, Chapter 1: Introduction. In: Levitus S (ed) NOAA Atlas NESDIS 66. Printing Office, Washington, DCGoogle Scholar
  5. de Boyer Montegüt C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi: 10.1029/2004JC002378 CrossRefGoogle Scholar
  6. Freeland HJ, Bychkov AS, Whitney F, Talyer C, Wong CS, Yurasov GI (1998) WOCE section P1W in the Sea of Okhotsk: 1. Oceanographic data description. J Geophys Res 103:15613–15623CrossRefGoogle Scholar
  7. Fukamachi Y, Mizuta G, Ohshima KI, Talley LD, Riser SC, Wakatsuchi M (2004) Transport and modification processes of dense shelf water revealed by long-term moorings off Sakhalin in the Sea of Okhotsk. J Geophys Res 109:C09S10. doi: 10.1029/2003JC001906
  8. Gladyshev S, Martin S, Riser S, Figurkin A (2000) Dense water production on the northern Okhotsk shelves: comparison of ship-based spring–summer observations for 1996 and 1997 with satellite observations. J Geophys Res 105:26281–26299CrossRefGoogle Scholar
  9. Gladyshev S, Talley L, Kanatakov G, Khen G, Wakatsuchi M (2003) Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water. J Geophys Res 108:3186. doi: 10.1029/2001JC000877 CrossRefGoogle Scholar
  10. Itoh M (2007) Warming of Intermediate Water in the Sea of Okhotsk since the 1950s. J Oceanogr 63:637–641CrossRefGoogle Scholar
  11. Itoh M, Ohshima KI, Wakatsuchi M (2003) Distribution and formation of Okhotsk Sea Intermediate Water: an analysis of isopycnal climatology data. J Geophys Res 108:3257. doi: 10.1029/2002JC001350 CrossRefGoogle Scholar
  12. Katsumata K, Yasuda I (2010) Estimates of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific. J Oceanogr 66:489–504CrossRefGoogle Scholar
  13. Kitani K (1973) An oceanographic study of the Sea of Okhotsk, particularly in regard to cold waters. Bull Far Seas Fish Res Lab 9:45–77Google Scholar
  14. Kowalik Z, Polyakov I (1998) Tide in the Sea of Okhotsk. J Phys Oceanogr 28:1389–1409CrossRefGoogle Scholar
  15. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova HE, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, vol 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68. US Government Printing Office, Washington, DCGoogle Scholar
  16. Lozier S, Owens WB, Curry RG (1995) The climatology of the North Atlantic. Prog Oceanogr 36:1–44CrossRefGoogle Scholar
  17. Martin S, Drucker R, Yamashita K (1998) The production of ice and dense shelf water in the Okhotsk Sea polynyas. J Geophys Res 103:27771–27782CrossRefGoogle Scholar
  18. Miura T, Suga T, Hanawa K (2002) Winter mixed layer and formation of dichothermal water in the Bering Sea. J Oceanogr 58:815–823CrossRefGoogle Scholar
  19. Mizuta G, Fukamachi Y, Ohshima KI, Wakatsuchi M (2003) Structure and seasonal variability of the East Sakhalin Current. J Phys Oceanogr 33:2430–2445CrossRefGoogle Scholar
  20. Nakamura T, Awaji T (2004) Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: a three-dimensional nonhydrostatic model experiment. J Geophys Res 109:C09S07. doi: 10.1029/2003JC001850
  21. Nakanowatari T, Ohshima KI, Wakatsuchi M (2007) Warming and oxygen decrease of intermediate water in the northwestern North Pacific, originating from the Sea of Okhotsk, 1955–2004. Geophys Res Lett 34:L04602. doi: 10.1029/2006GL028243 CrossRefGoogle Scholar
  22. Nakatsuka T, Yoshikawa C, Toda M, Kawamura K, Wakatsuchi M (2002) An extremely turbid intermediate water in the Sea of Okhotsk: implication for the transport of particulate organic matter in a seasonally ice-bound sea. Geophys Res Lett 29:1757. doi: 10.1029/2001GL014029 CrossRefGoogle Scholar
  23. Nishioka J, Ono T, Saito H, Nakatsuka T, Takeda S, Yoshimura T, Suzuki K, Kuma K, Nakabayashi S, Tsumune D, Mitsudera H, Johnson WK, Tsuda A (2007) Iron supply to the western subarctic Pacific: importance of iron export from the Sea of Okhotsk. J Geophys Res 112:C10012. doi: 10.1029/2006JC004055 CrossRefGoogle Scholar
  24. Ohshima KI, Mizuta G, Itoh M, Fukamachi Y, Watanabe T, Nabae Y, Suehiro O, Wakatsuchi M (2001) Winter oceanographic conditions in the southwestern part of the Okhotsk Sea and their relation to sea ice. J Oceanogr 57:451–460CrossRefGoogle Scholar
  25. Ohshima KI, Wakatsuchi M, Fukamachi Y, Mizuta G (2002) Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J Geophys Res 107:3195. doi: 10.1029/2001JC001005 CrossRefGoogle Scholar
  26. Ohshima KI, Simizu D, Itoh M, Mizuta G, Fukamachi Y, Riser SC, Wakatsuchi M (2004) Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J Phys Oceanogr 34:513–525CrossRefGoogle Scholar
  27. Ohshima KI, Fukamachi Y, Mutoh M, Wakatsuchi M (2005) A generation mechanism for mesoscale eddies in the Kuril Basin of the Okhotsk Sea: baroclinic instability caused by the enhanced tidal mixing. J Oceanogr 61:247–260CrossRefGoogle Scholar
  28. Ohshima KI, Ono J, Simizu D (2008) Particle tracking experiments for drifting materials on a model of the Sea of Okhotsk. Bull Coast Oceanogr 45:115–124Google Scholar
  29. Ohshima KI, Nakanowatari T, Riser S, Wakatsuchi M (2010) Seasonal variation in the in- and outflow of the Okhotsk Sea with the North Pacific. Deep Sea Res II 57:1247–1256CrossRefGoogle Scholar
  30. Oka E, Talley LD, Suga T (2007) Temporal variability of winter mixed layer in the mid- to high-latitude North Pacific. J Oceanogr 63:293–307CrossRefGoogle Scholar
  31. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  32. Ramsey PH, Ramsey PP (2007) Optimal trimming and outlier elimination. J Mod Appl Stat Methods 6:355–360Google Scholar
  33. Reid JL (1965) Intermediate water of the Pacific Ocean. Johns Hopkins University Press, BaltimoreGoogle Scholar
  34. Shcherbina AY, Talley LD, Rudnick DL (2004a) Dense water formation on the northwestern shelf of the Okhotsk Sea: I. Direct observations of brine rejection. J Geophys Res 109:C09S08. doi: 10.1029/2003JC002196
  35. Shcherbina AY, Talley LD, Rudnick DL (2004b) Dense water formation on the northwestern shelf of the Okhotsk Sea: II. Quantifying the transports. J Geophys Res 109:C09S09. doi: 10.1029/2003JC002197
  36. Simizu D, Ohshima KI (2006) A model simulation on the circulation in the Sea of Okhotsk and the East Sakhalin Current. J Geophys Res 111:C05016. doi: 10.1029/2005JC002980 CrossRefGoogle Scholar
  37. Smith WHF, Wessel P (1990) Gridding with continuous curvature splines in tension. Geophysics 55:293–305CrossRefGoogle Scholar
  38. Spencer PL, Askelson MA, Doswell CA III (2007) Choosing the smoothing parameters within a multiple-pass Barnes objective analysis scheme: a cautionary note. Mon Weather Rev 24:713–726Google Scholar
  39. Stigler SM (1977) Do robust estimators work with real data? Ann Stat 5:1055–1098CrossRefGoogle Scholar
  40. Sugiura K, Tsunogai S (2005) Spatial and temporal variation of surface xCO2 providing net biological productivities in the western North Pacific in June. J Oceanogr 61:435–445CrossRefGoogle Scholar
  41. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans: their physics. Chemistry and general biology. Prentice-Hall, Englewood CliffsGoogle Scholar
  42. Tachibana Y, Oshima K, Ogi M (2008) Seasonal and interannual variations of Amur River discharge and their relationships to large-scale atmospheric patterns and moisture fluxes. J Geophys Res 113:D16102. doi: 10.1029/2007JD009555 CrossRefGoogle Scholar
  43. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tillbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622CrossRefGoogle Scholar
  44. Takizawa T (1982) Characteristics of the Soya Warm Current in the Okhotsk Sea. J Oceanogr Soc Jpn 38:281–292CrossRefGoogle Scholar
  45. Talley LD (1991) An Okhotsk water anomaly: implications for ventilation in the North Pacific. Deep Sea Res 38:S171–S190CrossRefGoogle Scholar
  46. Wakatsuchi M, Martin S (1990) Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography. J Geophys Res 95:13393–13410CrossRefGoogle Scholar
  47. Warner MJ, Bullister JL, Wisegraver DP, Gammon RH, Weiss RF (1996) Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific. J Geophys Res 101:20525–20542CrossRefGoogle Scholar
  48. Watanabe T, Wakatsuchi M (1998) Formation of 26.8–26.9 σ θ water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. J Geophys Res 103:2849–2865CrossRefGoogle Scholar
  49. White WB (1995) Design of a global observing system for gyre-scale upper ocean temperature variability. Prog Oceanogr 36:169–217CrossRefGoogle Scholar
  50. Wong CS, Matear RJ, Freeland HJ, Whitney FA, Bychkov AS (1998) WOCE line PIW in the Sea of Okhotsk 2. CFCs and the formation rate of intermediate water. J Geophys Res 103:15625–15642CrossRefGoogle Scholar
  51. Yamamoto M, Watanabe S, Tsunogai S, Wakatsuchi M (2002) Effect of sea ice formation and diapycnal mixing on the Okhotsk Sea Intermediate Water clarified with oxygen isotopes. Deep Sea Res 49:1165–1174CrossRefGoogle Scholar
  52. Yasuda I (1997) The origin of the North Pacific Intermediate Water. J Geophys Res 102:893–909CrossRefGoogle Scholar
  53. Zhabin IA, Abrosimova AA, Dubina VA, Nekrasov DA (2010) Influence of the Amur River runoff on the hydrological conditions of the Amur Liman and Sakhalin Bay (Sea of Okhotsk) during the spring–summer flood. Russ Meteorol Hydrol 35:295–300CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2012

Authors and Affiliations

  • Hiroki Uehara
    • 1
    Email author
  • Andrey A. Kruts
    • 2
  • Yuriy N. Volkov
    • 2
  • Tomohiro Nakamura
    • 1
  • Tsuneo Ono
    • 3
    • 4
  • Humio Mitsudera
    • 1
  1. 1.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  2. 2.Far Eastern Regional Hydrometeorological Research InstituteVladivostokRussia
  3. 3.Hokkaido National Fisheries Research InstituteFisheries Research AgencyKushioJapan
  4. 4.National Research Institute of Fisheries ScienceFisheries Research AgencyYokohamaJapan

Personalised recommendations