Journal of Oceanography

, Volume 68, Issue 6, pp 959–970 | Cite as

Distribution of glycerol dialkyl glycerol tetraethers, alkenones and polyunsaturated fatty acids in suspended particulate organic matter in the East China Sea

  • Takahiro Nakanishi
  • Masanobu YamamotoEmail author
  • Tomohisa Irino
  • Ryuji Tada
Original Article


We investigated the spatial distribution of glycerol dialkyl glycerol tetraethers (GDGTs), alkenones, and polyunsaturated fatty acids in particulate organic matter collected at four sites along a depth transect from the continental shelf to the Okinawa Trough in the East China Sea during the spring bloom in 2008. The maximum alkenone concentration appeared in the top 25 m at all sites and the \( U_{37}^{{{\text{K}}'}} \) values were consistent with in situ water temperatures in the depth interval, suggesting that the alkenones were produced mainly in surface water. At the slope and shelf sites, GDGTs in the water column showed a concentration maximum at 74–99 m depth, and the \( {\text{TEX}}_{86}^{\text{H}} \) agreed with in situ water temperatures, suggesting the in situ production of GDGTs in the depth interval. The low-salinity surface water above 20 m depth was characterized by low GDGT concentrations and low \( {\text{TEX}}_{86}^{\text{L}} \)-based temperatures, suggesting either the production of GDGTs in winter season or the lateral advection of GDGTs by an eastward current. At the slope and Okinawa Trough sites, TEX86-based temperatures were nearly constant in the water column deeper than 300 m and corresponded to temperatures at the surface and near-surface waters rather than in situ temperatures. This observation is consistent with a hypothesis that Thaumarchaeota cells produced in surface waters are delivered to deeper water and also indicates that the residence time of suspended GDGTs in the deep-water column is large enough to mix the GDGTs produced in different seasons.


GDGT TEX86 Alkenone \( U_{37}^{{{\text{K}}'}} \) POM The East China Sea 



We thank all the participants and onboard staff of cruise KY07-04 cruise. We also appreciate the help provided by Tatsufumi Okino and Masao Minagawa (Hokkaido University) with analysis. Special thanks go to Kyung-Hoon Shin and Suk-Hee Yoon (Hanyang University) for discussion. Comments by two anonymous reviewers improved this manuscript very much. The study was supported by a grant-in-aid for Scientific Research (A) the Japan Society for the Promotion of Science, No. 19204051 (to M.Y.).


  1. Agogué H, Brink M, Dinasquet J, Herndl GJ (2008) Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature 456:788–792CrossRefGoogle Scholar
  2. Baltar F, Aristegui J, Gasol JM, Hernandez-Leon S, Herndl GJ (2007) Strong coast-ocean and surface-depth gradients in prokaryotic assemblage structure and activity in a coastal transition zone region. Aquat Microb Ecol 50:63–74CrossRefGoogle Scholar
  3. Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441CrossRefGoogle Scholar
  4. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR (2011) Genome of a low-salinity ammonia-oxidizing Archaeon determined by single cell and metagenomic analysis. PLoS ONE 6:1–12CrossRefGoogle Scholar
  5. Brassell SC, Eglinton G, Marlowe IT, Pflaumann U, Sarnthein M (1986) Molecular stratigraphy: a new tool for climatic assessment. Nature 320:129–133CrossRefGoogle Scholar
  6. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252CrossRefGoogle Scholar
  7. Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Sinninghe Damsté JS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9:1001–1016CrossRefGoogle Scholar
  8. Furuya K, Hayashi M, Yabushita Y, Ishikawa A (2003) Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Res II 50:367–387CrossRefGoogle Scholar
  9. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathway of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:520–536CrossRefGoogle Scholar
  10. Herfort L, Schouten S, Boon JP, Sinninghe Damsté JS (2006) Application of the TEX86 temperature proxy to the southern North Sea. Org Geochem 37:1715–1726CrossRefGoogle Scholar
  11. Herndl GJ, Reinthaler TR, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309CrossRefGoogle Scholar
  12. Hopmans EC, Schouten S, Pancost R, van der Meer MTJ, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585–589CrossRefGoogle Scholar
  13. Hopmans EC, Weijers JWH, Schefuss E, Herfort L, Sinninghe Damsté JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224:107–116CrossRefGoogle Scholar
  14. Huguet C, Hopmans EC, Febo-Ayala W, Thompson DH, Sinninghe Damsté JS, Schouten S (2006a) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041CrossRefGoogle Scholar
  15. Huguet C, Kim JH, Sinninghe Damsté JS, Schouten S (2006b) Reconstruction of sea surface temperature variations in the Arabian Sea over the last 23 kyr using organic proxies (TEX86 and \( {\text{U}}_{37}^{{{\text{K}}'}} \)). Paleoceanography 21:PA300SGoogle Scholar
  16. Ichikawa H, Beardsley RC (2002) The current system in the Yellow and East China Seas. J Oceanogr 58:77–92CrossRefGoogle Scholar
  17. Japan Oceanographic Data Center (JODC) 1906–2003. Oceanographic data, monthly sea-surface temperature in the East China Sea,, Japan Hydrographic Association, Tokyo, Japan
  18. Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510CrossRefGoogle Scholar
  19. Kim JH, Schouten S, Hopmans EC, Donner B, Sinninghe Damsté JS (2008) Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochim Cosmochim Acta 72:1154–1173CrossRefGoogle Scholar
  20. Kim JH, van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Koc N, Hopmans EC, Sinninghe Damsté JS (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74:4639–4654CrossRefGoogle Scholar
  21. Kondo M (1985) Oceanographic investigations of fishing grounds in the East China Sea and the Yellow Sea—I, characteristics of the mean temperature and salinity distributions measured at 50 m and near the bottom. Bull Seikai Reg Fish Res Lab 62:19–55 (in Japanese with English abstract)Google Scholar
  22. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing archaeon. Nature 437:543–546CrossRefGoogle Scholar
  23. Marlowe IT, Brassell SC, Eglinton G, Green JC (1984) Long chain unsaturated ketones and esters in living algae and marine sediments. Org Geochem 6:135–141CrossRefGoogle Scholar
  24. Murray AE, Blakis A, Massana R, Strawzewski S, Passow U, Alldredge A, De Long EF (1999) A time series assessment of planktonic archaeal variability in the Santa Barbara Channel. Aquat Microb Ecol 20:129–145CrossRefGoogle Scholar
  25. Ouverney CC, Fuhrman JA (2000) Marine planktonic Archaea take up amino-acids. Appl Environ Microbiol 66:4829–4833CrossRefGoogle Scholar
  26. Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damsté JS, Rhee SK (2010) Cultivation of autotrophic ammonia-oxidizing Archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl Environ Microbiol 76:7575–7587CrossRefGoogle Scholar
  27. Patwardhan AP, Thompson DH (1999) Efficient synthesis of 40- and 48-membered tetraether macrocyclic bisphosphocholines. Org Lett 1:241–243CrossRefGoogle Scholar
  28. Pitcher A, Wuchter CW, Siedenberg K, Schouten S, Sinninghe Damsté JS (2011) Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea. Limnol Oceanogr 56:2308–2318CrossRefGoogle Scholar
  29. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367–369CrossRefGoogle Scholar
  30. Prahl FG, Muehlhausen LA, Zahnle DL (1988) Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochim Cosmochim Acta 52:2303–2310CrossRefGoogle Scholar
  31. Schouten S, Hopmans EC, Pancost RD, Sinninghe Damsté JS (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA 97:14421–14426Google Scholar
  32. Schouten S, Hopmans EC, Schefuß E, Sinninghe Damsté JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274CrossRefGoogle Scholar
  33. Schouten S, Huguet C, Hopmans EC, Kienhuis MVM, Sinninghe Damsté JS (2007) Analytical methodology for TEX86 paleothermometry by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944CrossRefGoogle Scholar
  34. Sicre MA, Tian RC, Saliot A (1994) Distribution of sterols in the suspended particles of the Chang Jiang Estuary and adjacent East China Sea. Org Geochem 21:1–10CrossRefGoogle Scholar
  35. Sinninghe Damsté JS, Rijpstra WIC, Reichart GJ (2002a) The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sediments. Geochem Cosmochim Acta 66:2737–2754CrossRefGoogle Scholar
  36. Sinninghe Damsté JS, Schouten S, Hopmans EC, van Duin ACT, Geenevasen JAJ (2002b) Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 43:1641–1651CrossRefGoogle Scholar
  37. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing archaeal supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340CrossRefGoogle Scholar
  38. Takagi M, Fukushima H, Asanuma I, Ishizaka I (1993) Northwestern Pacific Coastal Zone Color Scanner Monthly Composite (1978–1986), a CD-ROM PublicationGoogle Scholar
  39. Tanaka Y (2003) Coccolith fluxes and species assemblages at the shelf edge and in the Okinawa Trough of the East China Sea. Deep-Sea Res II 50:503–511CrossRefGoogle Scholar
  40. Turich C, Freeman KH, Bruns MA, Conte M, Jones AD, Wakeham SG (2007) Lipids of marine Archaea: patterns and provenance in the water-column and sediments. Geochim Cosmochim Acta 71:3272–3291CrossRefGoogle Scholar
  41. Verala MM, van Aken HM, Sintes E, Herndl GJ (2008) Latitudinal trends of Crenarchaeota and Bacteria in the meso- and bathypelagic water masses of the Eastern North Atlantic. Environ Microbiol 10:110–124Google Scholar
  42. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240CrossRefGoogle Scholar
  43. Volkman JK, Barrett SM, Blackburn SI, Sikes EL (1995) Alkenones in Gephyrocapsa oceanica: implications for studies of paleoclimate. Geochim Cosmochim Acta 59:513–520CrossRefGoogle Scholar
  44. Weijers JWH, Schouten S, Spaargaren OC, Sinninghe Damsté JS (2006) Occurrence and distribution of tetraether membrane in soils: implications for the use of the BIT index and the TEX86 SST proxy. Org Geochem 37:1680–1693CrossRefGoogle Scholar
  45. Wuchter C, Schouten S, Coolen MJL, Sinninghe Damsté JS (2004) Temperature-dependant variation in the distribution of tetraether membrane lipids of marine Crenarchaeota: implications for TEX86 paleothermometry. Paleoceanography 19:PA4028Google Scholar
  46. Wuchter C, Schouten S, Wakeham SG, Sinninghe Damsté JS (2005) Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: implications for TEX86 paleothermometry. Paleoceanography 20:PA3013Google Scholar
  47. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damsté JS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322CrossRefGoogle Scholar
  48. Yamamoto M, Shiraiwa Y, Inouye I (2000) Physiological responses of lipids in Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyceae) to growth status and their implications for alkenone paleothermometry. Org Geochem 31:799–811CrossRefGoogle Scholar
  49. Yamamoto M, Shimamoto A, Fukuhara T, Tanaka Y, Ishizaka J (2012) Glycerol dialkyl glycerol tetraethers and the TEX86 index in sinking particles in the western North Pacific. Org Geochem. doi: 10.1016/j.orggeochem.2012.04.010
  50. Yanagi T, Takahashi S, Hoshika A, Tanimoto T (1996) Seasonal variation in the transport of suspended matter in the East China Sea. J Oceanogr 52:539–552CrossRefGoogle Scholar
  51. Zhang Y, Sintes E, Chen J, Zhnag Y, Dai M, Jiao N, Herndl GJ (2009) Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquat Microb Ecol 56:65–79CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer Japan 2012

Authors and Affiliations

  • Takahiro Nakanishi
    • 1
    • 3
  • Masanobu Yamamoto
    • 1
    Email author
  • Tomohisa Irino
    • 1
  • Ryuji Tada
    • 2
  1. 1.Faculty of Environmental Earth ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoTokyoJapan
  3. 3.NITTOC Construction Co., Ltd.TokyoJapan

Personalised recommendations