Journal of Oceanography

, Volume 68, Issue 4, pp 485–496 | Cite as

Variability of the Bering Sea circulation in the period 1992–2010

  • Gleb Panteleev
  • Max Yaremchuk
  • Vladimir Luchin
  • Dmitri Nechaev
  • Takashi Kukuchi


Sea surface height anomalies observed by satellites in 1992–2010 are combined with monthly climatologies of temperature and salinity to estimate circulation in the southern Bering Sea. The estimated surface and deep currents are consistent with independent velocity observations by surface drifters and Argo floats parked at 1,000 m. Analysis reveals 1–3-Sv interannual transport variations of the major currents with typical intra-annual variability of 3–7 Sv. On the seasonal scale, the Alaskan Stream transport is well correlated with the Kamchatka (0.81), Near Strait (0.53) and the Bering Slope (0.37) currents. Lagged correlations reveal a gradual increase of the time the lags between the transports of the Alaskan Stream, the Bering Slope Current and the Kamchatka Current, supporting the concept that the Bering Sea basin is ventilated by the waters carried by the Alaskan Stream south of the Aleutian Arc and by the flow through the Near Strait. Correlations of the Bering Sea currents with the Bering Strait transport are dominated by the seasonal cycle. On the interannual time scale, significant negative correlations are diagnosed between the Near Strait transport and the Bering Slope and Alaskan Stream currents. Substantial correlations are also diagnosed between the eddy kinetic energy and Pacific Decadal Oscillation.


Bering Sea Inter-annual variability Sea surface height Volume transport Aleutian passes Kinetic energy 



This study was supported by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) through their sponsorship of research activities at the International Arctic Research Center and by the Office of Naval Research (Program element 0602435N, project “Observational Impact”). G. Panteleev was also supported by the National Science Foundation 1107925 award and by the North Pacific Research Board (NPRB) 828 award. D. Nechaev was supported by the NPRB 828 award.


  1. Clement Kinney J, Maslowski W, Okkonnen SR (2009) On the processes controlling shelf-basin exchange and outer shelf dynamics in the Bering Sea. Deep Sea Res II 56(17):1351–1376CrossRefGoogle Scholar
  2. Cherniawsky JY, Foreman MGG, Crawford WR, Beckley BD (2004) Altimeter observations of sea level variability off the West Coast of North America. Int J Remote Sensing 25:1303–1306CrossRefGoogle Scholar
  3. Cherniawsky JY, Crawford WR, Nikitin O, Carmack E (2005) Bering Strait transports from satellite altimetry. J Mar Res 63:887–900Google Scholar
  4. Clement JL, Maslowski W, Cooper LW, Grebmeier JM, Walczowski W (2005) Ocean circulation and exchanges through the northern Bering Sea19792001: model results. Deep Sea Res II 52(17):3509–3540CrossRefGoogle Scholar
  5. Cokelet ED, Schall ML, Dougherty DM (1996) ADCP-refrenced geostrophic circulation in the Bering Sea basin. J Phys Oceanogr 26(7):1113–1128CrossRefGoogle Scholar
  6. Cokelet ED, Stabeno PJ (1997) Mooring observations of the thermal structure, density stratification and currents in the southeast Bering basin. J Geophys Res 102(C10):1113–1128Google Scholar
  7. Cooper M, Haines K (1996) Altimetric assimilation with water property conservation. J Geophys Res 101:1059–1077CrossRefGoogle Scholar
  8. Elmann A (2010) Validation of the new Earth Gravitational Model EGM08 over the Baltic countries. Gravity, Geoid and Earth Observation International Association of Geodesy Symposia, vol 135, part 6, pp 489–496. doi: 10.1007/978-3-642-10634-7
  9. Fomin LM (1964) The dynamic method in oceanography. Elsevier Oceanogr Series, vol 2, p 212Google Scholar
  10. Foreman M, Bell RG, Cherniawsky JY, Beckley B (2004) Tides and sea-level variability in the south-west Pacific from TOPEX/Poseidon. N Z J Mar Freshw Res 38:649–669CrossRefGoogle Scholar
  11. Johnson GC, Stabeno PJ, Riser SC (2004) The Bering Slope Current revisited. J Phys Oceanogr 34(2):384–398CrossRefGoogle Scholar
  12. Hare SR, Mantua NJ, Francis RC (1999) Inverse production regimes: Alaskan and West Coast Salmon. Fisheries 24(1):6–14CrossRefGoogle Scholar
  13. Hogg A, Killworth PD, Blundell JR (2005) Mechanisms of decadal variability of the wind-driven ocean circulation. J Phys Oceanogr 35:512–531CrossRefGoogle Scholar
  14. Hu H, Wang J (2010) Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: process studies. J Geophys Res 115:C01006. doi: 10.1029/2008JC005175
  15. Hughes FW, Coachman LK, Aagard K (1974) Circulation transport and water exchange in the western Bering Sea. In: Hood DW, Kelly EJ (eds) Oceanography of the Bering Sea with emphasis of the renewable resources. Inst. of Mar. Sci., Univ. of Alaska Fairbanks, Fairbansk, pp 59–98Google Scholar
  16. Ladd C, Stabeno P (2009) Freshwater transport from the Pacific to the Bering Sea through the Amukta Pass. Geophys Res Lett 36:L14608.doi: 10.1029/2009GLO039095
  17. Luchin VA, Semiletov IP, Weller GE (2002) Changes in the Bering Sea region: atmosphere–ice–water system in the second half of the twentieth century. Prog Oceanogr 55(1–2):23–44CrossRefGoogle Scholar
  18. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bul Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  19. Maslowski W, Roman R, Kinney JC (2008) Effects of mesoscale eddies on the flow of the Alaskan Stream. J Geophys Res 113:C07036. doi: 10.1029/2007JC004341
  20. Mizobata K, Saitoh SI, Shiomoto A, Miyamura T, Shiga N, Imai K, Toratani M, Kajiwara Y, Sasaoka K (2002) Bering Sea cyclonic and anticyclonic eddies observed during summer 2000 and 2001. Prog Oceanogr 55:65–75CrossRefGoogle Scholar
  21. Mizobata K, Wang J, Saitoh SI (2006) Eddy-induced cross-slope exchange maintaining summer high productivity of the Bering Sea shelf break. J Geophys Res 111:C10017. doi: 10.1029/2005LC003335
  22. Mizobata K, Shimada K, Woodgate R, Saitoh S-I, Wang J (2010) Estimation of heat flux through the eastern Bering Strait. Geophys Res Lett 37:405–424Google Scholar
  23. Okkonen SR (1996) The influence of an Alaskan Stream eddy on flow through Amchitka Pass. J Geophys Res 101:8839–8851CrossRefGoogle Scholar
  24. Overland JE, Stabeno P (2004) Is the climate of the Bering Sea warming and affecting the ecosystem? EOS 85(33):309–312CrossRefGoogle Scholar
  25. Panteleev G, Stabeno P, Luchin VA, Nechaev D, Ikeda M (2006) Summer transport estimates of the Kamchatka Current derived as a variational inverse of hydrophysical and surface drifter data. Geophys Res Lett 33:L09609. doi: 10.1029/2005GL024974
  26. Panteleev G, Yaremchuk M, Stabeno P, Luchin V, Nechaev DA, Kukuchi T (2011) Dynamic topography of the Bering Sea. J Geophys Res 116:C05017. doi: 10.1029/2010JC006354
  27. Pascual A, Faugre Y, Larnicol G, Le Traon P-Y (2006) Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys Res Lett 33:L02611. doi: 10.1029/2005GL024633
  28. Reed RK (1984) Flow of the Alaskan Stream and its variations. Deep Sea Res 31(4):369–386CrossRefGoogle Scholar
  29. Reed RK, Khen GV, Stabeno PJ, Verkhunov AV (1993) Water properties and flow over the deep Bering Sea basin, summer 1991. Deep Sea Res 40:2325–2334CrossRefGoogle Scholar
  30. Roach AT, Aagaard K, Pease CH, Salo SA, Weingartner T, Pavlov V, Kulakov M (1995) Direct measurements of transport and water properties through Bering Strait. J Geophys Res 100:18443–18457Google Scholar
  31. Schreier PJ (2008) A unifying discussion of correlation analysis for complex random vectors. IEEE Trans Signal Proc 56(4):1327–1336CrossRefGoogle Scholar
  32. Schumacher JD, Reed RK (1992) Characteristic of current over the continental slope of the eastern Bering Sea. J Geophys Res 97:607–623CrossRefGoogle Scholar
  33. Stabeno, Reed (1992) Stabeno PJ, Reed RK (1992) A major circulation anomaly in the Western Bering Sea. Geophys Res Lett 19:1671–1674Google Scholar
  34. Stabeno PJ, Reed RK (1994) Circulation in the Bering Sea basin observed by satellite-tracked drifters: 1986–1993. J Phys Oceanogr 24:848–854CrossRefGoogle Scholar
  35. Stabeno PJ, Schumacher JD, Ohtani K (1999) The physical oceanography of the Bering Sea. In: Dynamics of the Bering Sea. Alaska Sea Grant College Program, FairbanksGoogle Scholar
  36. Stabeno PJ, Kachel DG, Sullivan ME (2005) Observation from moorings in the Aleutian Passes: temperature, salinity and transport. Fish Oceanogr 14(Suppl. 1):39–54CrossRefGoogle Scholar
  37. Verkhunov AV, Tkachenko YY (1992) Recent observations of variability in the Western Bering Sea current system. J Geophys Res 97(C9):14369–14376Google Scholar
  38. Wang J, Ikeda M (1997) Diagnosing ocean unstable baroclinic waves and meanders using the quasigeostrophic equations and the Q-vector method. J Phys Oceanogr 27:1158–1172CrossRefGoogle Scholar
  39. Wang J, Jin M, Patrick EV, Allen JR, Eslinger DL, Mooers CNK, Cooney RT (2001) Numerical simulations of the seasonal circulation patterns and thermochaline structures in the Prince William Sound, Alaska. Fish Oceanogr 10(suppl. 1):132–148CrossRefGoogle Scholar
  40. Wang J, Jin M, Musgrave DL, Ikeda M (2004) A hydrological digital elevation model for freshwater discharge into the Gulf of Alaska. J Geophys Res 109:C07009. doi: 10.1029/2002JC001430
  41. Wilson S (2000) Launching the ARGO armada. Oceanus 42(1):17–19Google Scholar
  42. Woodgate RA, Aagaard K, Weingartner T (2005) Monthly temperature, salinity, and transport variability of the Bering Strait through flow. Geophys Res Lett 32:L04601. doi: 10.1029/2004GL021880
  43. Zhang Y, Pedlosky J, Flierl GR (2011) Cross-shelf and out-of-bay transport driven by an open-ocean current. J Phys Oceanogr 41:2168–2185CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2012

Authors and Affiliations

  • Gleb Panteleev
    • 1
  • Max Yaremchuk
    • 2
  • Vladimir Luchin
    • 3
  • Dmitri Nechaev
    • 4
  • Takashi Kukuchi
    • 5
  1. 1.International Arctic Research Center (IARC)University of AlaskaFairbanksUSA
  2. 2.Naval Research LaboratoryStennis Space CenterHancockUSA
  3. 3.V.I.Il’ichev Pacific Oceanological InstituteFar Eastern Branch, Russian Academy of Sciences (POI FEB RAS)VladivostokRussia
  4. 4.Department of Marine ScienceUniversity of Southern MississippiHattiesburgUSA
  5. 5.Japan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations