Journal of Oceanography

, Volume 68, Issue 1, pp 183–194 | Cite as

Effect of ocean acidification on coastal phytoplankton composition and accompanying organic nitrogen production

  • Takeo Hama
  • Shoko Kawashima
  • Koichi Shimotori
  • Yuhi Satoh
  • Yuko Omori
  • Shigeki Wada
  • Taiki Adachi
  • Shun Hasegawa
  • Takashi Midorikawa
  • Masao Ishii
  • Shu Saito
  • Daisuke Sasano
  • Hiroko Endo
  • Tsuyoshi Nakayama
  • Isao Inouye
Original Article

Abstract

The effect of ocean acidification, caused by the increase in pCO2 in seawater, on phytoplankton population and on related organic nitrogen production was experimentally examined by use of a natural coastal microbial population. pCO2 and pH were controlled by aeration with air in which pCO2 was at the current level (control), for which ambient air was used, and with air in which pCO2 was “800” and “1200” ppm, in 500-L culture vessels. The experiment was continued for 15 days after addition of the inorganic nutrients such as nitrate, phosphate, and silicate. During most of the experimental period, a minor increase in phytoplankton biomass was noted, probably because of low irradiance, an increase in phytoplankton biomass was observed at the end of the experiment. Flow cytometric and microscopic observations revealed that this increase was because of Chrysochromulina sp. (Haptophyceae). The growth of Chrysochromulina sp. was most obvious in the control vessel, and tended to be obscured by increasing pCO2 (decrease in pH), indicating the possibility that ocean acidification inhibits the growth of specific phytoplankton groups, for example Chrysochromulina sp. Production of particulate organic nitrogen (PON), determined by the 15N tracer method, also diminished under acidified conditions compared with that at the current level.

Keywords

Ocean acidification pH pCO2 Phytoplankton composition Haptophyte Chrysochromulina Organic nitrogen production Flow cytometry 

References

  1. Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40CrossRefGoogle Scholar
  2. Chen CY, Durbin EG (1994) Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser 109:83–94CrossRefGoogle Scholar
  3. Clayton TD, Byrne RH (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res 40:2115–2129CrossRefGoogle Scholar
  4. Czerny J, Ramos JB, Riebesell U (2009) Influence of elevated CO2 concentration on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences 6:1865–1875CrossRefGoogle Scholar
  5. Delille B, Harley J, Zondervan I, Jacquet S, Chou L, Wollast R, Bellerby RGJ, Frankignoulle M, Borges AV, Riebesell U, Gattuso JP (2005) Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorids Emiliania huxleyi. Glob Biogeochem Cycles 19:GB2023. doi:10.1029/2004GB002318 CrossRefGoogle Scholar
  6. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, Dias PLS, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (eds) Contribution of Working Group I to the forth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 499–587Google Scholar
  7. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  8. Engel A, Goldthwait S, Passow U, Alldredge A (2002) Temporal decoupling of carbon and nitrogen dynamics in a mesocosm diatom bloom. Limnol Oceanogr 47:753–761CrossRefGoogle Scholar
  9. Engel A, Zondervan I, Aerts K, Beaufort L, Benthien A, Chou L, Delille B, Gattuso JP, Harlay J, Heemann C, Hoffmann L, Jacquet S, Nejstgaard J, Pizay MD, Rochelle-Newall E, Schneider U, Terbrueggen A, Riebesell U (2005) Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol Oceanogr 50:493–507CrossRefGoogle Scholar
  10. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  11. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefGoogle Scholar
  12. Feng Y, Warner ME, Zhang Y, Sun J, Fu F-X, Rose JM, Hutchins DA (2008) Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43:87–98CrossRefGoogle Scholar
  13. Feng Y, Hare CE, Rose JM, Handy SM, DiTullio GR, Lee PA, Smith WO Jr, Peloquin J, Tozzi S, Sun J, Zhang Y, Dunbar RB, Long MC, Sohst B, Lohan M, Hutchins DA (2010) Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep Sea Res I 57:368–383CrossRefGoogle Scholar
  14. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanism in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131CrossRefGoogle Scholar
  15. Grangeré K, Lefebvre S, Ménesguen A, Jouenne F (2009) On the interest of using field primary production data to calibrate phytoplankton rate processes in ecosystem models. Est Coast Shelf Sci 81:169–178CrossRefGoogle Scholar
  16. Hajdu S, Hoglander H, Larsson U (2007) Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6:189–205CrossRefGoogle Scholar
  17. Hama T, Yanagi K (2001) Production and neutral aldose composition of dissolved carbohydrates excreted by natural phytoplankton populations. Limnol Oceanogr 46:1945–1955CrossRefGoogle Scholar
  18. Hama T, Miyazaki T, Ogawa Y, Iwakuma T, Takahashi M, Otsuki A, Ichimura S (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36CrossRefGoogle Scholar
  19. Hama T, Handa N, Takahashi M, Whitney F, Wong CS (1988) Change in distribution patterns of photosynthetically incorporated C during phytoplankton bloom in controlled experimental ecosystem. J Exp Mar Biol Ecol 120:39–56CrossRefGoogle Scholar
  20. Hama T, Hama J, Handa N (1993) 13C tracer methodology in microbial ecology with special reference to primary production processes in aquatic environments. Adv Microbial Ecol 13:39–83CrossRefGoogle Scholar
  21. Hama T, Yanagi K, Hama J (2004) Decrease in molecular weight of photosynthetic products of marine phytoplankton during early diagenesis. Limnol Oceanogr 49:181–471CrossRefGoogle Scholar
  22. Hein M, Sand-Jensen K (1997) CO2 increases oceanic primary production. Nature 388:526–527CrossRefGoogle Scholar
  23. Hendriks IE, Duarte CM, Alvarez M (2010) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Est Coast Shelf Sci 86:157–164CrossRefGoogle Scholar
  24. Hopkins FE, Turner SM, Nightingale PD, Steinke M, Bakker D, Liss PS (2010) Ocean acidification and marine trace gas emissions. PNAS 107:760–765CrossRefGoogle Scholar
  25. Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol 45:1236–1251CrossRefGoogle Scholar
  26. Ishii M, Inoue HY, Matsueda H (2000) Coulometric precise analysis of total inorganic carbon in seawater and measurements of radiocarbon for the carbon dioxide in the atmosphere and for the total inorganic carbon in seawater. Tech Rep Met Res Inst 41:64Google Scholar
  27. Johnson KM, King AE, Sieburth JMcN (1985) Coulometric TCO2 analyses for marine studies; an introduction. Mar Chem 16:61–82CrossRefGoogle Scholar
  28. Kaas H, Larsen J, Mohlenberg F, Richardson K (1991) The Chrysochromulina polylepis bloom in the Kattegat (Scandinavia) May–June 1988. Distribution, primary production and nutrient dynamics in the late stage of the bloom. Mar Ecol Prog Ser 79:151–161CrossRefGoogle Scholar
  29. Kim JM, Lee K, Shin K, Kang JM, Lee HW, Kim M, Jang PG, Jang MC (2006) The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnol Oceanogr 51:1629–1636CrossRefGoogle Scholar
  30. Langer G, Geisen M, Baumann KH, Klaes J, Riebesell U, Thomas S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosyst 7:Q09006. doi:10.1029/2005GC001227 CrossRefGoogle Scholar
  31. Larsen JB, Larsen A, Thyrhaug R, Bratbak G, Sandaa RA (2008) Response of marine vial populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences 5:523–533CrossRefGoogle Scholar
  32. Lefebvre S, Mouget JL, Loret P, Rosa P, Tremblin G (2007) Comparison between fluorometry and oxymetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions. J Photochem Photobiol B: Biology 86:131–139CrossRefGoogle Scholar
  33. Liu H, Probert I, Uitz J, Claustre H, Aris-Brosou S, Frada M, Not F, Vargas C (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. PANS 106:12803–12808CrossRefGoogle Scholar
  34. Lueker TJ, Dickson AG, Keeling CD (2000) Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K 1 and K 2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem 70:105–119CrossRefGoogle Scholar
  35. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL Jr, Chen Z (eds) Contribution of Working Group I to the forth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, pp 747–845Google Scholar
  36. Not F, Latasa M, Scharek R, Viprey M, Karleskind P, Balague V, Ontoria-Ovideo I, Cumino A, Goetze E, Vaulot D, Massana R (2008) Protistan assemblages across the Indian Ocean, with a specific emphasis on the picoeukaryotes. Deep-Sea Res I 55:1456–1473CrossRefGoogle Scholar
  37. Orr JA, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GJ, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  38. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p 346Google Scholar
  39. Paulino AI, Egge JK, Larsen A (2008) Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5:739–748CrossRefGoogle Scholar
  40. Ramos JBE, Biswas H, Schulz KG, LaRoche J, Riebesell U (2007) Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochem Cycles 21:GB2028. doi:10.1029/2006GB002898 CrossRefGoogle Scholar
  41. Raven JA (1991) Physiology of inorganic carbon acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ 14:779–794CrossRefGoogle Scholar
  42. Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729CrossRefGoogle Scholar
  43. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefGoogle Scholar
  44. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhofer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zollner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548CrossRefGoogle Scholar
  45. Rost B, Zondervan I, Wolf-Gladrow D (2008) Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: current knowledge, contradictions and research directions. Mar Ecol Prog Ser 373:227–237CrossRefGoogle Scholar
  46. Saito S, Ishii M, Midorikawa T, Inoue HY (2008) Precise spectrophotometric measurement of seawater pHT with an automated apparatus using a flow cell in a closed circuit. Tech Rep Met Res Inst 57:31Google Scholar
  47. Sandaa R-A, Heldal M, Castberg T, Thyrhaug R, Bratbak G (2001) Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology 290:271–280CrossRefGoogle Scholar
  48. Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42CrossRefGoogle Scholar
  49. Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327:676–679CrossRefGoogle Scholar
  50. Suttle CA, Chan A (1995) Viruses infecting the marine Prymnesiophyte Chrysochromulina spp.: isolation, preliminary characterization and natural abundance. Mar Ecol Prog Ser 118:275–282CrossRefGoogle Scholar
  51. Suzuki R, Ishimaru T (1990) An improved method for the determination of phytoplankton chlorophyll using N,N-Dimethylformamide. J Oceanogr Soc Jpn 46:190–194CrossRefGoogle Scholar
  52. Thomas WH, Gibson GH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:11–71CrossRefGoogle Scholar
  53. Tortell PD, Morel FMM (2002) Sources of inorganic carbon for phytoplankton in the eastern Subtropical and Equatorial Pacific Ocean. Limnol Oceanogr 47:1012–1022CrossRefGoogle Scholar
  54. Tortell PD, Reinfelder JR, Morel FMM (1997) Active uptake of bicarbonate by diatoms. Nature 390:243–244CrossRefGoogle Scholar
  55. Tortell PD, DiTullio GR, Sigman DM, Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol Prog Ser 236:37–43CrossRefGoogle Scholar
  56. Tortell PD, Payne CD, Li Y, Trimborn S, Rost B, Smith WO, Riesselman C, Dunbar RB, Sedwick P, DiTullio GR (2008) CO2 sensitivity of Southern Ocean phytoplankton. Geophys Res Lett 35:L04605CrossRefGoogle Scholar
  57. Yoshimura T, Nishioka J, Suzuki K, Hattori H, Kiyosawa H, Watanabe YW (2010) Impacts of elevated CO2 on organic carbon dynamics in nutrient depleted Okhotsk Sea surface waters. J Exp Mar Biol Ecol 395:191–198CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2011

Authors and Affiliations

  • Takeo Hama
    • 1
  • Shoko Kawashima
    • 1
  • Koichi Shimotori
    • 1
  • Yuhi Satoh
    • 1
  • Yuko Omori
    • 1
    • 4
  • Shigeki Wada
    • 6
  • Taiki Adachi
    • 2
  • Shun Hasegawa
    • 2
  • Takashi Midorikawa
    • 3
  • Masao Ishii
    • 3
  • Shu Saito
    • 3
    • 5
  • Daisuke Sasano
    • 3
  • Hiroko Endo
    • 1
  • Tsuyoshi Nakayama
    • 1
  • Isao Inouye
    • 1
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  3. 3.Geochemical Research DepartmentMeteorological Research InstituteTsukubaJapan
  4. 4.Center for Global Environmental Research, National Institute for Environmental StudiesTsukubaJapan
  5. 5.Global Environment and Marine DepartmentJapan Meteorological AgencyTokyoJapan
  6. 6.Shimoda Marine Research CenterUniversity of TsukubaShimodaJapan

Personalised recommendations