Journal of Oceanography

, Volume 68, Issue 1, pp 93–111 | Cite as

Interannual variations of the Hawaiian Lee Countercurrent induced by potential vorticity variability in the subsurface

  • Hideharu Sasaki
  • Shang-Ping Xie
  • Bunmei Taguchi
  • Masami Nonaka
  • Shigeki Hosoda
  • Yukio Masumoto
Special Section: Original Article New developments in mode-water research: Dynamic and climatic effects


Interannual variations of the Hawaiian Lee Countercurrent (HLCC) in the 2000s were investigated using satellite and Argo profiling float observations. The satellite-observed sea surface height shows that the geostrophic eastward current was anomalously strong to the west away from Hawaii in 2003 and 2005. However, the trade winds and the orographic wind curl dipole in the lee of Hawaii that drives the climatological mean HLCC were not particularly strong in these years, suggesting that the accelerations of the HLCC were not caused by the wind stress curl forcing around Hawaii and subsequent Rossby wave propagation. Using Argo observations, we found negative potential vorticity (PV) anomalies in the subsurface north of the HLCC in these 2 years. The pycnocline is lifted northward as low PV waters of different densities stack up in the vertical, and the HLCC is then accelerated via the thermal wind. The intensification and/or southward intrusion of the eastern subtropical mode water and subtropical mode water seem to have induced negative PV anomalies in 2003 and 2005, respectively. Using high-resolution ocean simulations, we confirmed the migrations of PV anomalies and their contributions to the HLCC accelerations. Although the HLCC is located away from the cores of major mode waters, our results suggest that interannual variations of the HLCC are affected by those of mode waters.


Hawaiian Lee Countercurrent Low potential vorticity water Interannual variations High-resolution ocean simulation 



The OFES simulations were conducted on the Earth Simulator under support from JAMSTEC. We thank Drs. B. Qiu and F. Kobashi for valuable discussions and the reviewers for valuable comments. We thank T. Ohira for his help in constructing the MOAA GPV product. QuikSCAT wind stress data in the J-OFURO dataset were provided by Dr. K. Kutsuwada. This study was supported in part through Grant-In-Aid for Scientific Research 22106006 and that on Innovative Areas #2205 by the Japanese Ministry of Education, Culture, Sports, Science and Technology, and also through 23340139 by the Japan Society for the Promotion of Science. IPRC publication # 809.


  1. Aoki Y, Suga T, Hanawa K (2002) Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J Phys Oceanogr 32:2299–2311CrossRefGoogle Scholar
  2. Bingham F (1992) The formation and spreading of subtropical mode water in the North Pacific. J Geophys Res 97:11177–11189CrossRefGoogle Scholar
  3. Boyer TP, Stephens C, Antonov JI, Conkright ME, Locarnini RA, O’Brien TD, Garcia HE (2002) World ocean atlas 2001, vol 2: salinity, NOAA atlas NESDIS 50. US Government Printing Office, Washington, DCGoogle Scholar
  4. Carton L, Grodsky SA, Liu H (2008) Variability of the oceanic mixed layer, 1960–2004. J Clim 21:1029–1047CrossRefGoogle Scholar
  5. Chen J, Qu T, Sasaki YN, Schneider N (2010) Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans identified by an eddy-resolving ocean GCM. Geophys Res Lett 37:L23608. doi: 10.1029/2010GL045239 CrossRefGoogle Scholar
  6. Flament P, Kennan S, Lumpkin R, Sawyer M, Stroup E (1998) The ocean. In: Juvik SP, Juvik JO (eds) Atlas of Hawaii. University of Hawaii Press, Honolulu, pp 82–86Google Scholar
  7. Hafner J, Xie SP (2003) Far-field simulation of the Hawaiian wake: sea surface temperature and orographic effects. J Atmos Sci 60:3021–3032CrossRefGoogle Scholar
  8. Hanawa K, Talley LD (2001) Mode waters. In: Church J (ed) Ocean circulation and climate. Academic, London, pp 373–386CrossRefGoogle Scholar
  9. Hautala S, Roemmich D (1998) Subtropical mode water in the Northeast Pacific Basin. J Geophys Res 103(C6):13055–13066CrossRefGoogle Scholar
  10. Hosoda S, Xie S-P, Takeuchi K, Nonaka M (2004) Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J Oceanogr 60:865–877Google Scholar
  11. Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev 8:47–59Google Scholar
  12. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Leetmaa A, Reynolds R, Jenne R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  13. Kobashi F, Kawamura H (2001) Variation of sea surface height at periods of 65–220 days in the subtropical gyre of the North Pacific. J Geophys Res 106:26817–26831CrossRefGoogle Scholar
  14. Kobashi F, Kawamura H (2002) Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J Geophys Res 107:3185. doi: 10.1029/2001JC001225 CrossRefGoogle Scholar
  15. Kobashi F, Mitsudera H, Xie S-P (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res 111:C09033. doi: 10.1029/2006JC003479 CrossRefGoogle Scholar
  16. Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29:1314–1333CrossRefGoogle Scholar
  17. Kubokawa A, Inui T (1999) Subtropical countercurrent in an idealized ocean GCM. J Phys Oceanogr 29:1303–1313CrossRefGoogle Scholar
  18. Kubota M, Iwasaka N, Kizu S, Konda M, Kutsuwada K (2002) Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). J Oceanogr 58:213–225CrossRefGoogle Scholar
  19. Kutsuwada K (1998) Impact of wind/wind-stress field in the North Pacific constructed by ADEOS/NSCAT data. J Oceanogr 54:443–456CrossRefGoogle Scholar
  20. Liu Q, Li L (2007) Baroclinic stability of oceanic Rossby wave in the North Pacific Subtropical Countercurrent. Chin J Geophys 50(1):84–93Google Scholar
  21. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  22. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simulator 1:35–56Google Scholar
  23. Montgomery RB, Stroup ED (1962) Equatorial waters and currents at 150°W in July–August 1952. Johns Hopkins Oceanographic Studies, no 1. Johns Hopkins University Press, BaltimoreGoogle Scholar
  24. Nonaka M, Xie S-P, Sasaki H (2011) Interannual variations in low potential vorticity water and the subtropical countercurrent in an eddy-resolving OGCM. J Oceanogr. doi: 10.1007/s10872-011-0042-3
  25. Oka E (2009) Seasonal and interannual variation of North Pacific Subtropical Mode Water in 2003–2006. J Oceanogr 65:151–164. doi: 10.1007/s10872-009-0015-y CrossRefGoogle Scholar
  26. Pacanowski RC, Griffies SM (1999) The MOM 3 manual, GFDL Ocean Group technical report no 4. NOAA/Geophysical Fluid Dynamics Laboratory, PrincetonGoogle Scholar
  27. Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. J Phys Oceanogr 36:1365–1380. doi: 10.1175/JPO2918.1 CrossRefGoogle Scholar
  28. Qiu B, Koh DA, Lumpkin C, Flament P (1997) Existence and formation mechanism of the North Hawaiian Ridge Current. J Phys Oceanogr 27:431–444CrossRefGoogle Scholar
  29. Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi: 10.1029/2009GL040914 CrossRefGoogle Scholar
  30. Sakamoto TT, Sumi A, Emori S, Nishimura T, Hasumi H, Suzuki T, Kimoto M (2004) Far-reaching effects of the Hawaiian Islands in the CCSR/NIES/FRCGC high-resolution climate model. Geophys Res Lett 31:L17212. doi: 10.1029/2004GL020907 CrossRefGoogle Scholar
  31. Sasaki H, Nonaka M (2006) Far-reaching Hawaiian Lee Countercurrent driven by wind-stress curl induced by warm SST band along the current. Geophys Res Lett 33:L13602. doi: 10.1029/2006GL026540 CrossRefGoogle Scholar
  32. Sasaki H, Sasai Y, Nonaka M, Masumoto Y, Kawahara S (2006) An eddy-resolving simulation of the quasi-global ocean driven by satellite-observed wind field: preliminary outcomes from physical and biological fields. J Earth Simulator 6:35–49Google Scholar
  33. Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. In: Ohfuchi W, Hamilton K (eds) High resolution numerical modelling of the atmosphere and ocean. Springer, New York, pp 157–186CrossRefGoogle Scholar
  34. Sasaki H, Xie S-P, Taguchi B, Nonaka M, Masumoto Y (2010) Seasonal variations of the Hawaiian Lee Countercurrent induced by the meridional migration of the trade winds. Ocean Dyn 60(3):705–715CrossRefGoogle Scholar
  35. Smith RB, Grubišic V (1993) Aerial observation of Hawaii’s wake. J Atmos Sci 50:3728–3750CrossRefGoogle Scholar
  36. Stephens C, Antonov JI, Boyer TP, Conkright ME, Locarnini RA, O’Brien TD, Garcia HE (2002) World ocean atlas 2001, vol 1: temperature, NOAA atlas NESDIS 49. US Government Printing Office, Washington, DCGoogle Scholar
  37. Suga T, Hanawa K (1995) Interannual variations of North Pacific Subtropical Mode Water in the 137E section. J Phys Oceanogr 25:1012–1017CrossRefGoogle Scholar
  38. Sugimoto S, Hanawa K (2010) Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys Res Lett 37:L03606. doi: 10.1029/2009GL041795 CrossRefGoogle Scholar
  39. Toyoda T, Awaji T, Masuda S, Sugiura N, Igarashi H, Mochizuki T, Ishikawa Y (2011) Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment. Dyn Atmos Oceans 51(1–2):1–25CrossRefGoogle Scholar
  40. Trenberth KE, Hurrell JW (1994) Decadal atmosphere–ocean variations in the Pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  41. Uda M, Hasunuma K (1969) The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Jpn 25:201–210Google Scholar
  42. Xie S-P, Kunitani T, Kubokawa A, Nonaka M, Hosoda S (2000) Interdecadal thermocline variability in the North Pacific for 1958–1997: a GCM simulation. J Phys Oceanogr 30:2798–2813CrossRefGoogle Scholar
  43. Xie SP, Liu WT, Liu Q, Nonaka M (2001) Far-reaching effects of the Hawaiian Islands on the Pacific Ocean–atmosphere system. Science 292:2057–2060CrossRefGoogle Scholar
  44. Xie S-P, Xu L-X, Liu Q, Kobashi F (2011) Dynamical role of mode-water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J Clim 24:1212–1225CrossRefGoogle Scholar
  45. Yamanaka G, Ishizaki H, Hirabara M, Ishikawa I (2008) Decadal variability of the subtropical front of the western North Pacific in an eddy-resolving ocean general circulation model. J Geophys Res 113:C12027. doi: 10.1029/2008JC005002 CrossRefGoogle Scholar
  46. Yang Y, Xie S-P, Hafner J (2008a) Cloud patterns lee of Hawaii Island: a synthesis of satellite observations and numerical simulation. J Geophys Res 113:D15126. doi: 10.1029/2008JD009889 CrossRefGoogle Scholar
  47. Yang Y, Ma J, Xie S-P (2008b) Observations of the trade wind wakes of Kauai and Oahu. Geophys Res Lett 35:L04807. doi: 10.1029/2007GL031742 CrossRefGoogle Scholar
  48. Yoshida S, Qiu B, Hacker P (2010) Wind-generated eddy characteristics in the lee of the island of Hawaii. J Geophys Res 115:C03019. doi: 10.1029/2009JC005417 CrossRefGoogle Scholar
  49. Yu Z, Maximenko N, Xie S-P, Nonaka M (2003) On the termination of the Hawaiian Lee Countercurrent. Geophys Res Lett 30:1215. doi: 10.1029/2002GL016710 CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2011

Authors and Affiliations

  • Hideharu Sasaki
    • 1
  • Shang-Ping Xie
    • 2
  • Bunmei Taguchi
    • 1
  • Masami Nonaka
    • 3
  • Shigeki Hosoda
    • 4
  • Yukio Masumoto
    • 3
  1. 1.Earth Simulator Center, JAMSTECYokohamaJapan
  2. 2.International Pacific Research Center and Department of MeteorologyUniversity of Hawaii at ManoaHonoluluUSA
  3. 3.Research Institute for Global Change, JAMSTECYokohamaJapan
  4. 4.Research Institute for Global Change, JAMSTECYokosukaJapan

Personalised recommendations