Journal of Oceanography

, 67:651 | Cite as

Spatial structures of hydrothermal vents and vent-associated megafauna in the back-arc basin system of the Okinawa Trough, western Pacific

Original Article


Spatial patterns and morphology of hydrothermal vents and the occurrence of vent-associated megafauna were investigated in the back-arc basin system of the Okinawa Trough, western Pacific. Amongst hydrothermal vent fields located on the rising slopes to the NE and S of the basin, the Iheya North area has been subjected to a series of intensive diving surveys. Hydrothermal vents demonstrated concentrated patterns of distribution on different spatial scales. In Iheya North, the majority of vents occurred in lines parallel to the NE to W/SW alignment of the spreading axis, within a radius of ca. 200 m around the most active sulphide structure with the highest recorded fluid temperature of over 300°C. The morphology of hydrothermal vents varied greatly from an incipient flat rock with crevices to a 20- to 30-m-tall, multi-flanged structure with concomitant variation in the distribution and abundance of vent-associated megafauna, particularly a galatheid Shinkaia crosnieri and Bathymodiolus mussels. Comparison of active and inactive vents revealed that the spatial extent of Shinkaia ‘aggregation’ (a group of individuals with short nearest-neighbour distances) effectively defined a habitat unit of this species, and active hydrothermal chimneys contained more of these units, leading to greater spatial occupancy by Shinkaia. Given the temporally unstable nature of vent structures as recognised by repeated surveys, vent assemblages are thought to be closely dictated by the spatio-temporal dynamics of vents in the Okinawa Trough back-arc system.


Morphology Sulphide edifices Shinkaia Bathymodiolus Aggregation 


  1. Aoki M, Nakamura K (1989) The occurrence of chimneys in Izena Hole No. 2 ore body and texture and mineral composition of the sulfide chimneys. Proc JAMSTEC Symp Deep Sea Res 5:197–210 (in Japanese with English summary)Google Scholar
  2. Baba K, Williams AB (1998) New Galatheoidea (Crustacea, Decapoda, Anomura) from hydrothermal systems in the West Pacific Ocean: Bismarck Archipelago and Okinawa Trough. Zoosystema 20:143–156Google Scholar
  3. Chevaldonné P, Jollivet D (1993) Videoscopic study of deep-sea hydrothermal vent alvinellid polychaete populations: biomass estimation and behaviour. Mar Ecol Prog Ser 95:251–262CrossRefGoogle Scholar
  4. Childress JJ, Fisher CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441Google Scholar
  5. Copley JTP, Tyler PA, Murton BJ, Van Dover CL (1997) Spatial and interannual variation in the faunal distribution at Broken Spur vent field (29°N, Mid-Atlantic Ridge). Mar Biol 129:723–733CrossRefGoogle Scholar
  6. Copley JTP, Jorgensen PBK, Sohn RA (2007) Assessment of decadal-scale ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata. J Mar Biol Assoc UK 84:859–867CrossRefGoogle Scholar
  7. Cuvelier D, Sarrazin J, Colaço A, Copley J, Desbruyères D, Glover AG, Tyler P, Serrão Santos R (2009) Distribution and spatial variation of hydrothermal faunal assemblages at Lucky Strike (Mid-Atlantic Ridge) revealed by high-resolution video image analysis. Deep Sea Res Part I 56:2026–2040CrossRefGoogle Scholar
  8. Delaney JR, Robigou V, McDuff RE, Tivey MK (1992) Geology of a vigorous hydrothermal system on the Endeavour Segment, Juan de Fuca Ridge. J Geophys Res 97:19663–19682CrossRefGoogle Scholar
  9. Desbruyères D (1995) Temporal variations of deep-sea hydrothermal communities at 13°N/EPR. InterRidge News 4:6–10Google Scholar
  10. Desbruyères D, Segonzac M (1997) Handbook of deep-sea hydrothermal vent fauna. Èditions Ifremer, BrestGoogle Scholar
  11. Desbruyères D, Almeida A, Biscoito M, Comtet T, Khripounoff A, Le Bris N, Sarradin PM, Segonzac M (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440:201–216CrossRefGoogle Scholar
  12. Desbruyères D, Biscoito M, Caprais JC, Colaco A, Comtet T, Crassous P, Fouquet Y, Khripounoff A, Le Bris N, Olu K, Riso R, Sarradin PM, Segonzac M, Vangriesheim A (2001) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Res Part I 48:1325–1346CrossRefGoogle Scholar
  13. Embley RW, Chadwick WW (1994) Volcanic and hydrothermal processes associated with a recent phase of sea-floor spreading at the Northern Cleft segment—Juan-de-Fuca Ridge. J Geophys Res 99:4741–4760CrossRefGoogle Scholar
  14. Fujikura K, Fujiwara Y, Ishibashi J, Katayama S, Komatsu T, Maezawa Y, Maki Y, Miyazaki J, Tsuchida S, Yamaguchi T, Yamanaka T, Watabe H, Watanabe H, Zielinski S, Kato K (2001) Report on investigation of hydrothermal vent ecosystems by the crewed submersible ‘Shinkai 2000’ on the Dai-yon (No. 4) Yonaguni Knoll and the Hatoma Knoll, the Okinawa Trough. JAMSTEC J Deep Sea Res 19:142–154 (in Japanese with English summary)Google Scholar
  15. Fujikura K, Okutani T, Maruyama T (2008) Deep-sea life—biological observations using research submersibles. Tokai University Press, Tokyo (in Japanese with English captions)Google Scholar
  16. Fustec A, Desbruyères D, Juniper SK (1987) Deep-sea hydrothermal vent communities at 13N on the East Pacific Rise: microdistribution and temporal variations. Biol Oceanogr 4:121–164Google Scholar
  17. Gage JD, Tyler PA (1991) Deep-sea biology. Cambridge University Press, CambridgeGoogle Scholar
  18. Galéron J, Menot L, Renaud N, Crassous P, Khripounoff A, Treignier C, Sibuet M (2009) Spatial and temporal patterns of benthic macrofaunal communities on the deep continental margin in the Gulf of Guinea. Deep Sea Res Part II 56:2299–2312CrossRefGoogle Scholar
  19. Gebruk AV, Galkin SV, Vereshchaka AL, Moskalev LI, Southward AJ (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Adv Mar Biol 32:93–144CrossRefGoogle Scholar
  20. Gebruk AV, Chevaldonné P, Shank T, Lutz LA, Vrijenhoek RC (2000a) Deep-sea hydrothermal vent communities of the Logatchev area 14°45′N, Mid-Atlantic Ridge): diverse biotopes and high biomass. J Mar Biol Assoc UK 80:383–393CrossRefGoogle Scholar
  21. Gebruk AV, Southward EC, Kennedy H, Southward AJ (2000b) Food sources, behaviour, and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge. J Mar Biol Assoc UK 80:485–499CrossRefGoogle Scholar
  22. Glasby GP, Notsu K (2003) Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview. Ore Geol Rev 23:299–339CrossRefGoogle Scholar
  23. Gooday AJ (2002) Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J Oceanogr 58:305–332CrossRefGoogle Scholar
  24. Grassle JF (1986) The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol 23:301–362CrossRefGoogle Scholar
  25. Hashimoto J, Fujikura K (1992) Vent communities at the Suiyo Seamount, Mokuyo Seamount and Nikko Seamount. Proc JAMSTEC Symp Deep Sea Res 8:48–51 (in Japanese with English summary)Google Scholar
  26. Hashimoto J, Ohta S, Fujikura K, Miura T (1995) Microdistribution pattern and biogeography of the hydrothermal vent communities of the Minami-Ensei Knoll in the Mid-Okinawa Trough, western Pacific. Deep Sea Res Part I 42:577–598CrossRefGoogle Scholar
  27. Hashimoto J, Ohta S, Fiala-Médioni A, Auzende J-M, Kojima S, Segonzac M, Fujiwara Y, Hunt JC, Gena K, Miura T, Kikuchi T, Yamaguchi T, Toda T, Chiba H, Tsuchida S, Ishibashi J, Henry K, Zbinden M, Pruski A, Inoue A, Kobayashi H, Birrien J-L, Naka J, Yamanaka T, Laporte C, Nishimura K, Yeats C, Malagun S, Kia P, Oyaizu M, Katayama T (1999) Hydrothermal vent communities in the Manus Basin, Papua New Guinea: results of the BIOACCESS cruise’96 and’98. InterRidge News 8:12–18Google Scholar
  28. Hashimoto J, Ohta S, Gamo T, Chiba H, Yamaguchi T, Tsuchida S, Okudaira T, Watabe H, Yamanaka T, Kitazawa M (2001) First hydrothermal vent communities from the Indian Ocean discovered. Zool Sci 18:717–721CrossRefGoogle Scholar
  29. Haymon RM, Fornari D, Edwards M, Carbotte S, Wright D, Macdonald KC (1991) Hydrothermal vent distribution along the East Pacific Rise crest (9°09′-54′N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet Sci Lett 104:513–534CrossRefGoogle Scholar
  30. Hessler RR, Lonsdale PF (1991) Biogeography of Mariana Trough hydrothermal vent communities. Deep-Sea Res 38:185–199Google Scholar
  31. Hessler RR, Smithey WM, Keller CH (1985) Spatial and temporal variation of giant clams, tubeworms and mussels at deep-sea hydrothermal vents. In: Jones ML (ed) Hydrothermal vents of the eastern Pacific: an overview. Bull Biol Soc Wash 6:411–428Google Scholar
  32. Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Brugmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig R, Nakmura K, Petersen S, Reysenbach AL, Rona PA, Smith S, Sturz AA, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulfide deposit. Nature 377:713–716CrossRefGoogle Scholar
  33. Johnson NA, Campbell JW, Moorre TS, Rex MA, Etter RJ, McClain CR, Dowell MD (2007) The relationship between the standing stock of deep-sea macrobenthos and surface production in the western North Atlantic. Deep Sea Res Part I 54:1350–1360CrossRefGoogle Scholar
  34. Jollivet D (1996) Specific and genetic diversity at deep-sea hydrothermal vents: an overview. Biodivers Conserv 5:1619–1653CrossRefGoogle Scholar
  35. Kato S, Takano Y, Kakegawa T, Oba H, Inoue K, Kobayashi C, Utsumi M, Marumo K, Kobayashi K, Ito Y, Ishibashi J, Yamagishi A (2010) Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the southern Mariana Trough. Appl Environ Microbiol 76:2968–2979CrossRefGoogle Scholar
  36. Kimura M, Tanaka T, Kyo M, Ando M, Oomori T, Izawa E, Yoshikawa I (1989) Study of topography, hydrothermal deposits and animal colonies in the Middle Okinawa Trough hydrothermal areas using the submersible “SHINKAI 2000” system. Proc JAMSTEC Symp Deep Sea Res 5:223–244 (in Japanese with English summary)Google Scholar
  37. Kojima S (2002) Deep-sea chemoautosynthesis-based communities in the northwestern Pacific. J Oceanogr 58:343–363CrossRefGoogle Scholar
  38. Lee RW (2003) Thermal tolerances of deep-sea hydrothermal vent animals from the Northeast Pacific. Biol Bull 205:98–101CrossRefGoogle Scholar
  39. Lutz RA, Kennish MJ (1993) Ecology of deep-sea hydrothermal vent communities: a review. Rev Geophys 31:211–242CrossRefGoogle Scholar
  40. Miyake H, Kitada M, Tsuchida S, Okuyama Y, Nakamura K (2007) Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure. Mar Ecol 28:86–92CrossRefGoogle Scholar
  41. Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry, and ecological significance. FEMS Microbiol Ecol 65:1–14CrossRefGoogle Scholar
  42. Nakagawa S, Takai K, Inagaki F, Chiba H, Ishibashi J, Kataoka S, Hirayama H, Nunoura T, Horikoshi K, Sako Y (2005) Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54:141–155CrossRefGoogle Scholar
  43. Ohta S, Kim D (2001) Submersible observations of the hydrothermal vent communities on the Iheya Ridge, Mid-Okinawa Trough. Jpn J Oceanogr 57:663–677CrossRefGoogle Scholar
  44. Parson LM, Walker CL, Dixon DR (1995) Hydrothermal vents and processes. Royal Geological Society, LondonGoogle Scholar
  45. Polz MF, Robinson JJ, Cavanaugh CM, Van Dover CL (1998) Trophic ecology of massive shrimp aggregations at a Mid-Atlantic Ridge hydrothermal vent site. Limnol Oceanogr 43:1631–1638CrossRefGoogle Scholar
  46. Robigou V, Delaney JR, Stakes DS (1993) Large massive sulfide deposits in a newly discovered active hydrothermal system, the Highrise Field, Endeavor Segment, Juan-de-Fuca Ridge. Geophys Res Lett 20:1887–1890CrossRefGoogle Scholar
  47. Sarrazin J, Juniper SK (1999) Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser 185:1–19CrossRefGoogle Scholar
  48. Sarrazin J, Robigou V, Juniper SK, Delaney JR (1997) Biological and geological dynamics over four years on a high-temperature sulfide structure at the Juan de Fuca Ridge hydrothermal observatory. Mar Ecol Prog Ser 153:5–24CrossRefGoogle Scholar
  49. Sarrazin J, Juniper SK, Massoth G, Legendre P (1999) Physical and chemical factors influencing species distributions on hydrothermal sulfide edifices of the Juan de Fuca Ridge, northeast Pacific. Mar Ecol Prog Ser 190:89–112CrossRefGoogle Scholar
  50. Segonzac M (1992) Les peuplements associés a l’hydrothermalisme océaniue du Snake Pit (dorsale médio-atlantique; 23°N, 3480 m): composition et microdistribution de la mégafaune. C R Acad Sci Paris Sér III 314:593–600Google Scholar
  51. Segonzac M, de Saint Laurent M, Casanova B (1992) L’énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cah Biol Mar 34:535–571Google Scholar
  52. Shank TM, Fornari DJ, Von Damm KL, Lilley MD, Haymon RM, Lutz RA (1998) Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°N, East Pacific Rise). Deep Sea Res Part I 45:465–516Google Scholar
  53. Tivey MK, Stakes DS, Cook TL, Hannington MD, Petersen S (1999) A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: results of a petrologic and geochemical study. J Geophys Res 104:22859–22883CrossRefGoogle Scholar
  54. Tokeshi M (1999) Species coexistence: ecological and evolutionary perspectives. Blackwell, OxfordGoogle Scholar
  55. Tokeshi M (2002) Spatial distribution of a deep-sea crinoid Pentametrocrinus tuberculatus in the Izu-Ogasawara Arc, western Pacific. J Zool (Lond) 258:291–298CrossRefGoogle Scholar
  56. Tokeshi M (2003) Habitat utilization by macroinvertebrates in deep-sea sandy fields: examples from the An’ei Seamount, western Pacific. JAMSTEC J Deep Sea Res 23:87–97Google Scholar
  57. Tsuchida S, Fujiwara Y, Fujikura K (2003) Distribution and population structure of the galatheid crab Shinkaia crosnieri (Decapoda: Anomura: Galatheidae) in the southern Okinawa Trough. Jpn J Benthol 58:84–88 (in Japanese with English summary)Google Scholar
  58. Tsurumi M, Tunnicliffe V (2001) Characteristics of a hydrothermal vent assemblage on a volcanically active segment of Juan de Fuca Ridge, northeast Pacific. Can J Fish Aquatic Sci 58:530–542CrossRefGoogle Scholar
  59. Tsurumi M, Tunnicliffe V (2003) Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep Sea Res Part I 50:611–629CrossRefGoogle Scholar
  60. Tunnicliffe V, Fowler CMR (1996) Influence of sea-floor spreading on the global hydrothermal vent fauna. Nature 379:531–533CrossRefGoogle Scholar
  61. Tunnicliffe V, McArthur AG, McHugh D (1998) A biogeographical perspective of the deep-sea hydrothermal vent fauna. Adv Mar Biol 34:353–442CrossRefGoogle Scholar
  62. Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, PrincetonGoogle Scholar
  63. Van Dover CL (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Mar Ecol Prog Ser 230:137–158CrossRefGoogle Scholar
  64. Van Dover CL, Desbruyères D, Segonzac M, Comtet T, Saldanha L, FialaMedioni A, Langmuir C (1996) Biology of the Lucky Strike hydrothermal field. Deep Sea Res Part I 43:1509–1526CrossRefGoogle Scholar
  65. Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, Hashimoto J, Lilley MD, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Gotz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan IL, Turnipseed M, Won Y, Young CR, Vrijenhoek RC (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818–823CrossRefGoogle Scholar
  66. Watanabe K (2001) Mapping of the hydrothermal activity area on the Hatoma Knoll in the southern Okinawa Trough. JAMSTEC J Deep Sea Res 19:87–94 (in Japanese with English summary)Google Scholar
  67. Wei CL, Rowe GT, Hubbard GF, Scheltema AH, Wilson GDF, Petrescu I, Foster JM, Wicksten MK, Chen M, Davenport R, Soliman Y, Wang Y (2010) Bathymetric zonation of deep-sea macrofauna in relation to export of surface phytoplankton production. Mar Ecol Prog Ser 399:1–14CrossRefGoogle Scholar
  68. Wilcock WSD, Delaney JR (1996) Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet Sci Lett 145:49–64CrossRefGoogle Scholar
  69. Williams AB (1980) A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura). Proc Biol Soc Wash 93:443–472Google Scholar
  70. Woods AW, Delaney JR (1992) The heat and fluid transfer associated with the flanges on hydrothermal venting structures. Earth Planet Sci Lett 112:117–129CrossRefGoogle Scholar
  71. Yamamoto T, Kobayashi T, Nakasone K, Nakao S (1999) Chemosynthetic community at North Knoll, Iheya Ridge, Okinawa Trough. JAMSTEC J Deep Sea Res 15:19–24Google Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2011

Authors and Affiliations

  1. 1.AMBL-Kyushu UniversityAmakusaJapan

Personalised recommendations