Journal of Oceanography

, Volume 68, Issue 1, pp 63–77 | Cite as

The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific

  • Shinya Kouketsu
  • Hiroyuki Tomita
  • Eitarou Oka
  • Shigeki Hosoda
  • Taiyo Kobayashi
  • Kanako Sato
Special Section: Original Article New developments in mode-water research: Dynamic and climatic effects

Abstract

Distributions of mixed layer depths around the centers of anti-cyclonic and cyclonic eddies in the North Pacific Ocean were composited by using satellite-derived sea surface height anomaly data and Argo profiling float data. The composite distributions showed that in late winter, deeper mixed layers were more (less) frequently observed inside the cores of the anti-cyclonic (cyclonic) eddies than outside. This relationship was the clearest in the region of 140°E–160°W and 35°N–40°N, where the temperature and salinity of the deep mixed layers were similar to those of the lighter variety of central mode water (L-CMW). A simple one-dimensional bulk mixed layer model showed that both strong sea-surface heat and momentum fluxes and weak preexisting stratification contributed to formation of the deep mixed layer. These conditions were associated with the anti-cyclonic eddies, suggesting that these eddies are important in the formation of mode waters, particularly L-CMW.

Keywords

Mixed layer Mode water Meso-scale eddy Sea-surface flux 

Notes

Acknowledgments

The Argo float data used in this study were collected and made freely available by the International Argo Project and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The comments from anonymous reviewers were useful for improving the manuscript. This study was supported by the Japan Society for Promotion of Science (KAKENHI, Grant-in-Aid for Young Scientists (B), no. 20740279). E. Oka is supported by the Japan Society for Promotion of Science (KAKENHI, Grant-in-Aid for Scientific Research (B), no. 21340133) and the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT; Grant-in-Aid for Scientific Research of Innovative Areas under grant no. 22106007).

References

  1. Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17:589–603CrossRefGoogle Scholar
  2. Chelton DB, Schlax MC, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. doi:10.1029/2007GL030812
  3. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12,003Google Scholar
  4. Deser C, Alexander MA, Timlin MS (1996) Upper-ocean thermal variations in the North Pacific during 1970–1991. J Climate 9:1840–1855CrossRefGoogle Scholar
  5. Emerson S, Watanabe YW, Ono T, Mecking S (2004) Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J Oceanogr 60:139–147CrossRefGoogle Scholar
  6. Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Sci Agric 275(5301):805CrossRefGoogle Scholar
  7. Hanawa K, Sugimoto S (2004) ‘Reemergence’ areas of winter sea surface temperature anomalies in the world’s oceans. Geophys Res Lett 31:l10303. doi:10.1029/2004GL019904
  8. Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic Press, San Diego, pp 373–386Google Scholar
  9. Hosoda K, Hanawa K (2004) Anticyclonic eddy revealing low sea surface temperature in the sea south of Japan: case study of the eddy observed in 1999–2000. J Oceanogr 60(4):663–671CrossRefGoogle Scholar
  10. Hosoda S, Ohira T, Sato K, Suga T (2010) Improved description of global mixed-layer depth using Argo profiling floats. J Oceanogr 66:773–787CrossRefGoogle Scholar
  11. Isern-Fontanet J, Font J, García-Ladona E, Emelianov M, Millot C, Taupier-Letage I (2004) Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep Sea Res II 51(25–26):3009–3028CrossRefGoogle Scholar
  12. Isern-Fontanet J, García-Ladona E, Font J (2006) Vortices of the Mediterranean Sea: an altimetric perspective. J Phys Oceanogr 36(1):87–103CrossRefGoogle Scholar
  13. Isoguchi O, Kawamura H, Oka E (2006) Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. J Geophys Res 111(C10):C10,003Google Scholar
  14. Itoh S, Yasuda I (2010) Characteristics of mesoscale eddies in the Kuroshio–Oyashio extension region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40:1018–1034CrossRefGoogle Scholar
  15. Itoh S, Yasuda I (2010) Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. J Phys Oceanogr 40:2624–2642CrossRefGoogle Scholar
  16. Kako S, Kubota M (2009) Numerical study on the variability of mixed layer temperature in the North Pacific. J Phys Oceanogr 39(3):737–752CrossRefGoogle Scholar
  17. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  18. Kawamura H, Mizuno K, Toba Y (1986) Formation process of a warm-core ring in the Kuroshio–Oyashio frontal zone–December 1981–October 1982. Deep Sea Res A 33(11–12):1617–1640CrossRefGoogle Scholar
  19. Latif M, Barnett TP (1994) Causes of decadal climate variability over the North Pacific and North America. Sci Agric 266(5185):634CrossRefGoogle Scholar
  20. Masuzawa J (1969) Subtropical mode water. Deep Sea Res 16:453–472Google Scholar
  21. Minobe S, Kuwano-Yoshida A, Komori N, Xie S, Small R (2008) Influence of the Gulf Stream on the troposphere. Nat Biotechnol 452(7184):206–209Google Scholar
  22. Mizuno K, White W (1983) Annual and interannual variability in the Kuroshio current system. J Phys Oceanogr 13:1847–1867CrossRefGoogle Scholar
  23. Nakamura H (1996) A pycnostad on the bottom of the ventilated portion in the central subtropical North Pacific: its distribution and formation. J Oceanogr 52(2):171–188CrossRefGoogle Scholar
  24. Nishikawa S, Tsujino H, Sakamoto K, Nakano H (2010) Effects of mesoscale eddies on subduction and distribution of Subtropical Mode Water in an eddy-resolving OGCM of the western North Pacific. J Phys Oceanogr 40:1748–1765. doi:10.1175/2010JPO4261.1 Google Scholar
  25. Nonaka M, Xie SP (2003) Covariations of sea surface temperature and wind over the Kuroshio and its extension: evidence for ocean-to-atmosphere feedback. J Climate 16:1404–1413CrossRefGoogle Scholar
  26. Ohno Y, Iwasaka N, Kobashi F, Sato Y (2009) Mixed layer depth climatology of the North Pacific based on Argo observations. J Oceanogr 65(1):1–16CrossRefGoogle Scholar
  27. Oka E (2009) Seasonal and interannual variation of North Pacific subtropical mode water in 2003–2006. J Oceanogr 65(2):151–164CrossRefGoogle Scholar
  28. Oka E, Suga T (2003) Formation region of North Pacific subtropical mode water in the late winter of 2003. Geophys Res Lett 30(23):2205. doi:10.1029/2003GL018581 Google Scholar
  29. Oka E, Suga T (2005) Differential formation and circulation of North Pacific central mode water. J Phys Oceanogr 35(11):1997–2011CrossRefGoogle Scholar
  30. Oka E, Talley LD, Suga T (2007) Temporal variability of winter mixed layer in the mid-to high-latitude North Pacific. J Oceanogr 63(2):293–307CrossRefGoogle Scholar
  31. Oka E, Kouketsu S, Toyama K, Uehara K, Kobayashi T, Hosoda S, Suga T (2011) Formation and subduction of central mode water based on profiling float data, 2003–2008. J Phys Oceanogr. 41:113–129. doi:10.1175/2010JPO4419.1 Google Scholar
  32. Qiu B, Chen S (2005) Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J Phys Oceanogr 35(11):2090–2103CrossRefGoogle Scholar
  33. Qiu B, Hacker P, Chen S, Donohue KA, Watts DR, Mitsudera H, Hogg NG, Jayne SR (2006) Observations of the subtropical mode water evolution from the Kuroshio extension system study. J Phys Oceanogr 36(3):457–473CrossRefGoogle Scholar
  34. Rainville L, Jayne SR, McClean JL, Maltrud ME (2007) Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio extension region. Ocean Model 17(4):338–356CrossRefGoogle Scholar
  35. Roemmich D (2001) Observing the Oceans in the 21st Century, Bureau of Meteorology. In: Argo: the global array of profiling floats, pp 248–258Google Scholar
  36. Saito H, Suga T, Hanawa K, Watanabe T (2007) New type of pycnostad in the western subtropical-subarctic transition region of the North Pacific: transition region mode water. J Oceanogr 63(4):589–600CrossRefGoogle Scholar
  37. Saitoh SI, Inagake D, Sasaoka K, Ishizaka J, Nakame Y, Saino T (1998) Satellite and ship observations of Kuroshio warm-core ring 93A off Sanriku, northwestern North Pacific, in spring 1997. J Oceanogr 54(5):495–508CrossRefGoogle Scholar
  38. Schneider N, Miller AJ, Alexander MA, Deser C (1999) Subduction of decadal North Pacific temperature anomalies: observations and dynamics. J Phys Oceanogr 29(5):1056–1070CrossRefGoogle Scholar
  39. Suga T, Takei Y, Hanawa K (1997) Thermostad distribution in the North Pacific subtropical gyre: the central mode water and the subtropical mode water. J Phys Oceanogr 27(1):140–152CrossRefGoogle Scholar
  40. Suga T, Motoki K, Aoki Y, Macdonald A (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34(1):3–22CrossRefGoogle Scholar
  41. Sugimoto S, Hanawa K (2005) Remote reemergence areas of winter sea surface temperature anomalies in the North Pacific. Geophys Res Lett 32(1):L01606. doi:10.1029/2004GL021410
  42. Taguchi B, Qiu B, Nonaka M, Sasaki H, Xie S, Schneider N (2010) Decadal variability of the Kuroshio extension: mesoscale eddies and recirculation. Ocean Dyn 60:673–691Google Scholar
  43. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, R B, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res II 56(8–10):554–577CrossRefGoogle Scholar
  44. Talley LD, Raymer ME (1982) Eighteen degree water variability. J Mar Res 40:757–775Google Scholar
  45. Tatebe H, Yasuda I (2001) Seasonal axis migration of the upstream Kuroshio extension associated with standing oscillations. J Geophys Res 106:16,685–16,692CrossRefGoogle Scholar
  46. Tokinaga H, Tanimoto Y, Nonaka M, Taguchi B, Fukamachi T, Xie S, Nakamura H, Watanabe T, Yasuda I (2006) Atmospheric sounding over the winter Kuroshio extension: effect of surface stability on atmospheric boundary layer structure. Geophys Res Lett 33(4)Google Scholar
  47. Tokinaga H, Tanimoto Y, Xie S, Sampe T, Tomita H, Ichikawa H (2010) Ocean frontal effects on the vertical development of clouds over the western North Pacific: In situ and satellite observations. J Climate 22:4241–4260CrossRefGoogle Scholar
  48. Tomita H, Kubota M, Cronin M, Iwasaki S, Konda M, Ichikawa H (2010) An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J Geophys Res 115(C3):C03,018CrossRefGoogle Scholar
  49. Toyama K, Suga T (2010) Vertical structure of North Pacific mode waters. Deep Sea Res II 57:1152–1160CrossRefGoogle Scholar
  50. Tsujino H, Yasuda T (2004) Formation and circulation of mode waters of the North Pacific in a high-resolution GCM. J Phys Oceanogr 34(2):399–415CrossRefGoogle Scholar
  51. Uehara H, Suga T, Hanawa K, Shikama N (2003) A role of eddies in formation and transport of North Pacific subtropical mode water. Geophys Res Lett 30(13):1705CrossRefGoogle Scholar
  52. Von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University Press, CambridgeGoogle Scholar
  53. Weller RA, Plueddemann AJ (1996) Observations of the vertical structure of the oceanic boundary layer. J Geophys Res 101(C4):8789–8806CrossRefGoogle Scholar
  54. White WB, Annis JL (2003) Coupling of extratropical mesoscale eddies in the ocean to westerly winds in the atmospheric boundary layer. J Phys Oceanogr 33(5):1095–1107CrossRefGoogle Scholar
  55. Wong A, Keeley R, Carval T, Argo Data Management Team (2010) Argo quality control manual. Argo Data Management Team, version 2.5 edn, available from web site of Argo Data Management, http://www.argodatamgt.org/
  56. Yasuda I, Tozuka T, Noto M, Kouketsu S (2000) Heat balance and regime shifts of the mixed layer in the Kuroshio Extension. Prog Oceanogr 47:257–278CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2011

Authors and Affiliations

  • Shinya Kouketsu
    • 1
  • Hiroyuki Tomita
    • 1
  • Eitarou Oka
    • 2
  • Shigeki Hosoda
    • 1
  • Taiyo Kobayashi
    • 1
  • Kanako Sato
    • 1
  1. 1.Research Institute for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  2. 2.Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaJapan

Personalised recommendations