Journal of Oceanography

, Volume 67, Issue 1, pp 127–133 | Cite as

ENSO-induced interannual variability in the southeastern South China Sea

Short Contribution

Abstract

In this study, El Niño Southern Oscillation (ENSO)-induced interannual variability in the South China Sea (SCS) is documented using outputs from an eddy-resolving data-assimilating model. It is suggested that during an El Niño (La Niña) event, off-equatorial upwelling (downwelling) Rossby waves induced by Pacific equatorial wind anomalies impinge on the Philippine Islands and excite upwelling (downwelling) coastal Kelvin waves that propagate northward along the west coast of the Philippines after entering the SCS through the Mindoro Strait. The coastal Kelvin waves may then induce negative (positive) sea level anomalies in the southeastern SCS and larger (smaller) volume transport through the Mindoro and Luzon Straits during an El Niño (La Niña) event.

Keywords

ENSO Coastal Kelvin waves Mindoro Strait Luzon Strait Bluelink model 

References

  1. Cai SQ, Liu HL, Li W, Long XM (2005) Application of LICOM to the numerical study of the water exchange between the South China Sea and its adjacent oceans. Acta Oceanol Sin 24(4):10–19Google Scholar
  2. Clarke A, Liu X (1994) Interannual sea level in the northern and eastern Indian Ocean. J Phys Oceanogr 24:1224–1235CrossRefGoogle Scholar
  3. Dong DP, Zhou WD, Yang Y, Du Y (2008) Diagnostic calculations and discussions on main outflow passage of South China Sea. J Trop Oceanogr 27(6):1–5Google Scholar
  4. Fang G, Chen H, Wei Z, Wang Y, Wang X, Li C (2006) Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. J Geophys Res 111:C11S16. doi:10.1029/2005JC003276
  5. Fang G, Wang Y, Wei Z, Fang Y, Qiao F, Hu X (2009) Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dyn Atmos Oceans 47:55–72CrossRefGoogle Scholar
  6. Feng M, Meyers G, Pearce A, Wijffels S (2003) Annual and Interannual Variations of the Leeuwin Current at 32°S. J Geophys Res 108(11):3355. doi:10.1029/2002JC001763 CrossRefGoogle Scholar
  7. Feng M, Li Y, Meyers G (2004) Multidecadal variations of Fremantle sea level: footprint of climate variability in the tropical Pacific. Geophys Res Lett 31:L16302. doi:10.1029/2004GL019947
  8. Hu J, Kawamura H, Hong H, Qi Y (2000) A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J Oceanogr 56:607–624CrossRefGoogle Scholar
  9. Johnson HL, Garrett C (2006) What fraction of a Kelvin wave incident on a narrow strait is transmitted? J Phys Oceanogr 36:945–954CrossRefGoogle Scholar
  10. Klein SA, Soden BJ, Lau NC (1999) Remote Sea surface variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932CrossRefGoogle Scholar
  11. Levitus S, Antonov JI, Boyer TP (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604Google Scholar
  12. Metzger EJ, Hurlburt HE (1996) Coupled dynamics of the South China Sea, the Sulu Sea and the Pacific Ocean. J Geophys Res 101(C5):12331–12352Google Scholar
  13. Qu T (2000) Upper layer circulation in the South China Sea. J Phys Oceanogr 30:1450–1460CrossRefGoogle Scholar
  14. Qu T, Song YT (2009) Mindoro Strait and Sibutu Passage transports estimated from satellite data. Geophys Res Lett 36:L09601. doi:10.1029/2009GL037314
  15. Qu T, Kim YY, Yaremchuk M, Tozuka T, Ishida A, Yamagata T (2004) Can Luzon Strait transport plays a role in conveying the impact of ENSO to the South China Sea? J Clim 17:3644–3657CrossRefGoogle Scholar
  16. Schiller A, Oke PR, Brassington G, Entel M, Fiedler R, Griffin DA, Mansbridge JV (2008) Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Prog Oceanogr 76(3):334–365CrossRefGoogle Scholar
  17. Spall MA, Pedlosky J (2005) Reflection and transmission of equatorial Rossby Waves. J Phys Oceanogr 35(3):363–373CrossRefGoogle Scholar
  18. Su JL (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24:1745–1760CrossRefGoogle Scholar
  19. Tessler ZD, Gordon AL, Pratt LJ, Sprintall J (2010) Transport and dynamics of the Panay Sill overflow in the Philippine Seas. J Phys Oceanogr 40:2679–2695. doi:10.1175/2010JPO4395.1 Google Scholar
  20. Tian J, Yang Q, Liang X, Xie L, Hu D, Wang F Qu T (2006) Observation of Luzon Strait transport. Geophys Res Lett 33:L19607. doi:10.1029/2006GL026272
  21. Wang C, Wang W, Wang D, Wang Q (2006a) Interannual variability of the South China Sea associated with El Niño. J Geophys Res 111:C03023. doi:10.1029/2005JC003333
  22. Wang D, Liu Q, Huang RX, Du Y, Qu T (2006b) Interannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product. Geophys Res Lett 33:L14605. doi:10.1029/2006GL026316
  23. Yaremchuk M, McCreary JL, Yu ZJ, Furue R (2009) The South China Sea throughflow retrieved from climatological data. J Phys Oceanogr 39:753–767CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2011

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.CSIRO Marine and Atmospheric ResearchFloreatAustralia

Personalised recommendations