Journal of Oceanography

, Volume 66, Issue 6, pp 773–787 | Cite as

Improved description of global mixed-layer depth using Argo profiling floats

  • Shigeki Hosoda
  • Tsuyoshi Ohira
  • Kanako Sato
  • Toshio Suga


A global data set describing the gridded mixed-layer depth (MLD) in 10-day intervals was produced using high-quality Argo float data from 2001 to 2009. The characteristics and advantages provided by the new MLD data set are described here, including a comparison based on two different thresholds and using data sets of different vertical and temporal resolution. The MLD in the data set was estimated on the basis of a shallower depth of the iso-thermal layer (TLD) or iso-pycnal layer (PLD), calculated using the finite difference method. The MLD data are incorporated into 2° × 2° grid in the global ocean, including marginal seas. Also, two threshold values were used to examine differences in the MLD and its seasonal temporal variability. The characteristics and advantages of using the Argo 10-day intervals to determine the MLD were then confirmed by comparing those data with the station buoy daily means and the Argo monthly means. With respect to vertical and temporal resolutions, the Argo 10-day data has two distinct advantages: (1) improved representation of the MLD vertical change due to high vertical resolution, especially during periods of large MLD variability and (2) more detailed representation of the temporal change in MLD than achieved with the Argo monthly mean data, especially from winter to spring in mid and high latitudes. These advantages were maintained in the case of a larger threshold despite the fact that the MLD is rather deep and the detailed variation in its distribution differs depending on the season and location. This study also investigated the relative influence of TLD and PLD to the MLD calculation for each grid. Generally, the MLD is primarily determined based on the PLD at low and mid latitudes (TLD > PLD), whereas the TLD is more important at high latitudes, especially in winter (TLD < PLD). In the case of a larger threshold, the area of the larger PLD influence spreads polewards because of the greater effect of salinity in winter. Although there are some differences in the effect of temperature and salinity in estimations of the MLD, both are indispensable factors for the MLD estimations even at different thresholds.


Mixed layer depth Argo global data set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akima, H. (1970): A new method for interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mech., 17, 589–603.Google Scholar
  2. Argo Data Management Team (2002): Report of the Argo Data Management Meeting. Proc. Argo Data Management Third Meeting, Marine Environmental Data, Ottawa, ON, Canada, 42 pp.Google Scholar
  3. Argo Science Team (2001): Argo: The global array of profiling floats. p. 248–258. In Observing the Oceans in the 21st Century, ed. by C. J. Koblinsky and N. R. Smith, GODAE Project Office, Bureau of Meteorology, Melbourne.Google Scholar
  4. Argo Steering Team (2008): 9th Meeting of the International Argo Steering Team. Exeter, U.K., 98 pp.Google Scholar
  5. Boyer, T. P., J. I. Antonov, H. E. Garcia, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, M. T. Pitcher, O. K. Baranova and I. V. Smolyar (2006): World Ocean Database 2005, ed. by S. Levitus, NOAA Atlas NESDIS 60, U.S. Government Printing Office, Washington, D.C., 190 pp., DVDs.Google Scholar
  6. Brainerd, K. E. and M. C. Gregg (1995): Surface mixed and mixing layer depths. Deep-Sea Res., Part I, 9, 1521–1543.CrossRefGoogle Scholar
  7. de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar and D. Iudicone (2004): Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, doi:10.1029/2004JC002378.CrossRefGoogle Scholar
  8. de Boyer Montégut, C., J. Mignot, A. Lazar and S. Cravatte (2007): Control of salinity on the mixed layer depth in the world ocean: 1 General description. J. Geophys. Res., 112, C06011, doi:10.1029/2006JC003953.CrossRefGoogle Scholar
  9. Iwasaka, N., T. Suga, K. Takeuchi, K. Mizuno, Y. Takatsuki, K. Ando, T. Kobayashi, E. Oka, Y. Ichikawa, M. Miyazaki, H. Matsuura, K. Izawa, C.-S. Yang, N. Shikama and M. Aoshima (2003): Pre-Japan ARGO: experimental observation of upper and middle layers south of the Kuroshio Extension Region using profiling floats. J. Oceanogr., 59, 119–127.CrossRefGoogle Scholar
  10. Iwasaka, N., F. Kobashi, Y. Kinoshita and Y. Ohno (2006): Seasonal variations of the upper ocean in the western North Pacific observed by an Argo float. J. Oceanogr., 62, 481–492.CrossRefGoogle Scholar
  11. Kara, A. B., P. A. Rochford and H. E. Hurlburt (2000): An optimal definition for ocean mixed layer depth. J. Geophys. Res., 105, 16803–16821.CrossRefGoogle Scholar
  12. Kara, A. B., P. A. Rochford and H. E. Hurlburt (2003): Mixed layer depth variability over the global ocean. J. Geophys. Res., 108, 3079, doi:10.1029/2000JC000736.CrossRefGoogle Scholar
  13. Levitus, S. (1982): Climatological Atlas of the World Ocean. NOAA Prof. Paper 13, 173 pp.Google Scholar
  14. Lorbacher, K., D. Dommenget, P. P. Niiler and A. Kohl (2006): Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. J. Geophys. Res., 111, C07010, doi:10.1029/2003JC002157.CrossRefGoogle Scholar
  15. Lukas, R. and E. Lindstrom (1991): The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res., 96, 3343–3357.CrossRefGoogle Scholar
  16. Monterey, G. and S. Levitus (1997): Seasonal Variability of Mixed Layer Depth for the World Ocean. NOAA Atlas NESDIS 14, 100 pp.Google Scholar
  17. Obata, A., J. Ishizaka and M. Endoh (1996): Global verification of critical depth theory for phytoplankton bloom with climatological in situ temperature and satellite ocean color data. J. Geophys. Res., 101, 20657–20667.CrossRefGoogle Scholar
  18. Price, J. F., R. A. Weller and R. Pinkel (1986): Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling and wind mixing. J. Geophys. Res., 91, 8411–8427.CrossRefGoogle Scholar
  19. Sherman, J., R. E. Davis, W. B. Owens and J. Valdes (2001): The autonomous underwater glider “Spray”. IEEE J. Oceanic Eng., 26, 437–446.CrossRefGoogle Scholar
  20. Ueki, I., K. Ando, Y. Kuroda and K. Kutsuwada (2002): Salinity variation and its effect on dynamic height along the 156°E in the Pacific warm pool. Geophys. Res. Lett., 29(14), 1689, doi:10.1029/2001GL013993.CrossRefGoogle Scholar
  21. UNESCO (1983): Algorithms for computation of fundamental properties of seawater. UNESCO Technical Paper in Marine Science 44, 53 pp.Google Scholar
  22. White, W. B. (1995): Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36, 169–217.CrossRefGoogle Scholar
  23. Whitney, F. A. and H. J. Freeland (1999): Variability in upperocean water properties in the NE Pacific Ocean. Deep-Sea Res. II, 11–12, 2351–2370.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan and Springer 2010

Authors and Affiliations

  • Shigeki Hosoda
    • 1
  • Tsuyoshi Ohira
    • 2
  • Kanako Sato
    • 1
  • Toshio Suga
    • 1
    • 3
  1. 1.Japan Agency for Marine-Earth Science and TechnologyYokosuka, KanagawaJapan
  2. 2.Marine Works Japan Ltd.Yokohama, KanagawaJapan
  3. 3.Department of GeophysicsTohoku UniversitySendai, MiyagiJapan

Personalised recommendations