Journal of Oceanography

, Volume 66, Issue 5, pp 709–717 | Cite as

Distribution of deep near-inertial waves observed in the Kuroshio Extension

  • Jae-Hun Park
  • Kathleen A. Donohue
  • D. Randolph Watts
  • Luc Rainville
Original Articles


The distribution of deep near-inertial waves (NIWs) is investigated using data mainly from an array of 46 near-bottom acoustic current meter sensors spanning a 600 km × 600 km region as part of the Kuroshio Extension System Study during 2004–2006. The deep NIW distribution is interpreted in the context of both upper-layer and near-bottom mapped circulations. The wintertime-mean mixed-layer NIW energy input, modeled from observed wind stress, has the same range of values north and south of the Kuroshio Extension in this region. Yet, the wintertime-mean deep NIW energy distribution reveals a sharp factor-of-5 decrease from north to south of the Kuroshio jet. This direct observational evidence shows that the Kuroshio Extension blocks the equatorward propagation of NIWs. The NIW energy that does reach the sea floor within the subset of wintertime observations in the subtropical gyre arrives with patchy spatial and temporal distribution. Elevated NIW energy in deep water is associated with anticyclones in the deep barotropic flow and unassociated with upper layer eddies.


Near-inertial wave Kuroshio acoustic current meter inverted echo sounder deep eddies Kuroshio Extension System Study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alford, M. H. (2003): Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett., 30, 1424, doi:10.1029/2002GL016614.CrossRefGoogle Scholar
  2. Chiswell, S. M. (2003): Deep equatorward propagation of inertial oscillations. Geophys. Res. Lett., 30, 1533, doi:10.1029/2003GL017057.CrossRefGoogle Scholar
  3. Donohue, K. A., D. R. Watts, K. Tracey, M. Wimbush, J.-H. Park, N. Bond, M. Cronin, S. Chen, B. Qui, P. Hacker, N. Hogg, S. Jayne, J. McClean, L. Rainville, H. Mitsudera, Y. Tanimoto and S.-P. Xie (2008): Program studies the Kuroshio Extension. EOS Trans. AGU, 89(17), 161–162.CrossRefGoogle Scholar
  4. Donohue, K. A., D. R. Watts, K. Tracey, A. D. Greene and M. Kennelly (2010): Mapping circulation in the Kuroshio Extension with an array of Current and Pressure recording Inverted Echo Sounders. J. Atmos. Oceanic Technol., 27, 507–527.CrossRefGoogle Scholar
  5. Garrett, C. (2001): What is the “Near-Inertial” band and why is it different from the rest of the internal wave spectrum. J. Phys. Oceanogr., 31, 727–742.Google Scholar
  6. Gerkema, T. and V. I. Shrira (2005): Near-inertial waves on the “traditional” β plane. J. Geophys. Res., 110, C01003, doi:10.1029/2004JC002519.CrossRefGoogle Scholar
  7. Gerkema, T., J. T. F. Zimmerman, L. R. M. Maas and H. van Haren (2008): Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys., 46, RG2004, doi:10.1029/2006RG000220.CrossRefGoogle Scholar
  8. Hibiya, T., M. Nagasawa and Y. Niwa (2002): Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res., 107, 3207, doi:10.1029/2001JC001210.CrossRefGoogle Scholar
  9. Howe, P. J., K. A. Donohue and D. R. Watts (2009): Stream-coordinate structure and variability of the Kuroshio Extension. Deep Sea Res. I, 56(7), 1093–1116.CrossRefGoogle Scholar
  10. Kennelly, M., K. Donohue, A. Greene, K. L. Tracey and D. R. Watts (2008): Inverted echo sounder data report: Kuroshio Extension System Study (KESS), April 2004 to July 2006. GSO Tech. Rep. 2008-02, Graduate Sch. of Oceanogr., Univ. of R. I., Narragansett (available at
  11. Kunze, E. (1985): Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544–565.CrossRefGoogle Scholar
  12. Kunze, E. and T. B. Sanford (1984): Observations of near-inertial waves in a front. J. Phys. Oceanogr., 14, 566–581.CrossRefGoogle Scholar
  13. Kunze, E., R. W. Schmitt and J. M Toole (1995): The energy balance in a warm-core ring’s near-inertial critical layer. J. Phys. Oceanogr., 25, 942–956.CrossRefGoogle Scholar
  14. Lee, D.-K. and P. P. Niiler (1998): The inertial chimney: The near-inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103, 7579–7591.CrossRefGoogle Scholar
  15. Mooers, C. N. K. (1975): Several effects of a bariclinic current on the cross-stream propagation of inertial-internal waves. Geophys. Fluid Dyn., 6, 245–275.CrossRefGoogle Scholar
  16. Morozov, E. G. and M. G. Velarde (2008): Inertial oscillations as deep ocean response to hurricanes. J. Oceanogr., 64, 495–509.CrossRefGoogle Scholar
  17. Niwa, Y. and T. Hibiya (1999): Response of the deep ocean internal wave field to traveling midlatitude storms as observed in long-term current measurements. J. Geophys. Res., 104, 10981–10989.CrossRefGoogle Scholar
  18. Park, J.-H. and D. R. Watts (2005): Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett., 32, L10611, doi:10.1029/2005GL022936.CrossRefGoogle Scholar
  19. Park, J.-H., D. R. Watts, K. L. Tracey and D. A. Mitchell (2005): A multiindex GEM technique and its application to the southwestern Japan/East Sea. J. Atmos. Oceanic Technol., 22, 1282–1293.CrossRefGoogle Scholar
  20. Park, J.-H., D. R. Watts, K. A. Donohue and S. R. Jayne (2008): A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension. Geophys. Res. Lett., 35, L17601, doi:10.1029/2008GL034778.CrossRefGoogle Scholar
  21. Shcherbina, A. Y., L. D. Talley, E. Firing and P. Hacker (2003): Nearsurface frontal zone trapping and deep upward propagation of internal wave energy in the Japan/East Sea. J. Phys. Oceanogr., 33, 900–912.CrossRefGoogle Scholar
  22. Watanabe, M. and T. Hibiya (2002): Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8), 1239, doi:10.1029/2001GL014422.CrossRefGoogle Scholar
  23. Watts, D. R., X. Qian and K. L. Tracey (2001a): On mapping abyssal current and pressure fields under the meandering Gulf Stream. J. Atmos. Oceanic Technol., 18, 1052–1067.CrossRefGoogle Scholar
  24. Watts, D. R., C. Sun and S. Rintoul (2001b): A two-dimensional gravest empirical mode determined from hydrographic observations in the Subantarctic Front. J. Phys. Oceanogr., 31, 2186–2209.CrossRefGoogle Scholar
  25. Young, W. R. and M. Ben Jelloul (1997): Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735–766.CrossRefGoogle Scholar
  26. Zhai, X., R. J. Greatbatch and J. Sheng (2004): Advective spreading of storm-induced inertial oscillations in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 31, L14315, doi:10.1029/2004GL020084.CrossRefGoogle Scholar
  27. Zhai, X., R. J. Greatbatch and J. Sheng (2005a): Doppler-shifted inertial oscillations on a β plane. J. Phys. Oceanogr., 35, 1480–1488.CrossRefGoogle Scholar
  28. Zhai, X., R. J. Greatbatch and J. Zhao (2005b): Enhanced vertical propagation of storm-induced near-inertial energy in an eddying ocean channel model. Geophys. Res. Lett., 32, L18602, doi:10.1029/2005GL023643.CrossRefGoogle Scholar
  29. Zhai, X., R. J. Greatbatch and C. Eden (2007): Spreading of near-inertial energy in a 1/12° model of the North Atlantic Ocean. Geophys. Res. Lett., 34, L10609, doi:10.1029/2007GL029895.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Jae-Hun Park
    • 1
  • Kathleen A. Donohue
    • 1
  • D. Randolph Watts
    • 1
  • Luc Rainville
    • 2
  1. 1.Graduate School of OceanographyUniversity of Rhode IslandNarragansettUSA
  2. 2.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations