Journal of Oceanography

, Volume 66, Issue 5, pp 663–671 | Cite as

A Practical bi-parameter formula of gas transfer velocity depending on wave states

Original Articles


The parameter that describes the kinetics of the air-sea exchange of a poorly soluble gas is the gas transfer velocity which is often parameterized as a function of wind speed. Both theoretical and experimental studies suggest that wind waves and their breaking can significantly enhance the gas exchange at the air-sea interface. A relationship between gas transfer velocity and a turbulent Reynolds number related to wind waves and their breaking is proposed based on field observations and drag coefficient formulation. The proposed relationship can be further simplified as a function of the product of wind speed and significant wave height. It is shown that this bi-parameter formula agrees quantitatively with the wind speed based parameterizations under certain wave age conditions. The new gas transfer velocity attains its maximum under fully developed wave fields, in which it is roughly dependent on the square of wind speed. This study provides a practical approach to quantitatively determine the effect of waves on the estimation of air-sea gas fluxes with routine observational data.


Gas transfer velocity wind speed wind wave significant wave height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borges, A. V., J. Vanderborght, L. Schiettecatte, F. Gazeau, S. Ferron-Smith, B. Delille and M. Frankignoulle (2004): Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27(4), 593–603.CrossRefGoogle Scholar
  2. Carter, D. J. T. (1982): Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineer., 9, 17–33.CrossRefGoogle Scholar
  3. Dobson, F. W., S. D. Smith and R. J. Anderson (1994): Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmosphere-Ocean, 32(1), 237–256.Google Scholar
  4. Geernaert, G. L., S. E. Larsen and F. Hansen (1987): Measurements of the wind stress, heat flux, and turbulent intensity during storm conditions over the North Sea. J. Geophys. Res., 92, 13127–13139.CrossRefGoogle Scholar
  5. Guan, C., S. Zhang, J. Sun and Q. Sun (2004): On the fetch law for wind waves in deep water. Period. Ocean Univ. China, 34(5), 704–712 (in Chinese with English abstract).Google Scholar
  6. Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey and P. Hill (2006): Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett., 33, L16611, doi:10.1029/2006GL026817.CrossRefGoogle Scholar
  7. Jacobs, C. J., W. Kohsiek and W. A. Oost (1999): Air-sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE. Tellus, 51B, 629–641.Google Scholar
  8. Jähne, B., K. O. Münnich, R. Bosinger, A. Dutzi, W. Huber and P. Libner (1987): On parameters influencing air-water gas exchange. J. Geophys. Res., 92, 1937–1949.CrossRefGoogle Scholar
  9. Janssen, J. A. M. (1997): Does wind stress depend on sea-state or not? A statistical analysis of HEXMAX data. Bound.-Layer Meteor., 83, 479–503.CrossRefGoogle Scholar
  10. Johnson, H., K. J. Højstrup, H. J. Vested and S. E. Larsen (1998): On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28(9), 1702–1716.CrossRefGoogle Scholar
  11. Jones, I. S. F. and Y. Toba (2001): Wind Stress over the Ocean. Cambridge Univ. Press, Cambridge, U.K., 307 pp.CrossRefGoogle Scholar
  12. Komori, S., R. Nagaosa and Y. Murakami (1993): Turbulence structure and mass transfer across a sheared air-water interface in a wind-driven turbulence. J. Fluid Mech., 249, 161–183.CrossRefGoogle Scholar
  13. Kuss, J., K. Nagel and B. Schneider (2004): Evidence from the Baltic Sea for an enhanced CO2 air-sea transfer velocity. Tellus, 56B, 175–182.Google Scholar
  14. Lafon, C., J. Piazzola, P. Forget and S. Despiau (2007): Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J. Mar. Syst., 66, 38–46.CrossRefGoogle Scholar
  15. Liss, P. S. and L. Merlivat (1986): Air-sea gas exchange rates: introduction and synthesis. p. 113–129. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. by P. Buart-Menard, Reidel, Washington, D.C.Google Scholar
  16. MicGillis, W. R., J. B. Edson, J. E. Hare and C. W. Fairall (2001): Direct covariance air-sea CO2 fluxes. J. Geophys. Res., 106, 16729–16745.CrossRefGoogle Scholar
  17. Mitsuyasu, H. (1968): On the growth of the spectrum of wind-generated waves (I). Rep. Res. Inst. Appl. Mech., Kyushu Univ., 16, 459–482.Google Scholar
  18. Monahan, E. C. and M. C. Spillane (1984): The role of oceanic whitecaps in air-sea exchange. p. 495–503. In Gas Transfer at Water Surfaces, ed. by W. Brutsaert and G. H. Jirka, Reidel, Dordrecht.Google Scholar
  19. Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin and R. C. Upstill-Goddard (2000a): In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14, 373–387.CrossRefGoogle Scholar
  20. Nightingale, P. D., P. S. Liss and P. Schlosser (2000b): Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett., 27(14), 2117–2120.CrossRefGoogle Scholar
  21. Ocampo-Torres, F. J. and M. A. Donelan (1995): On the influence of fetch and the wave field on the CO2 transfer process: Laboratory measurements. p. 543–552. In Air-Water Gas Transfer, ed. by B. Jähne and E. C. Monahan, AEON Verlag & Studio, Hanau.Google Scholar
  22. Oost, W. A. (1999): ASGAMAGE final report. KNMI Scientific Report, 99-04, Royal Netherlands Meteorological Institute, De Bilt.Google Scholar
  23. Oost, W. A., G. J. Komen, C. M. Jacobs and C. Van Oort (2002): New evidence for a relationship between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409–438.CrossRefGoogle Scholar
  24. Pierson, W. J. (1991): Comment on “Effects of sea maturity on satellite altimeter measurements” by Roman E. Glazman and Stuart H. Pilorz. J. Geophys. Res., 96(C3), 4973–4977.CrossRefGoogle Scholar
  25. Smith, S. D. (1980): Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709–726.CrossRefGoogle Scholar
  26. Sugihara, Y., H. Tsumori, T. Ohga, H. Yoshioka and S. Serizawa (2007): Variation of whitecap coverage with wave-field conditions. J. Mar. Syst., 66, 47–60.CrossRefGoogle Scholar
  27. Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento and R. Wanninkhof (2007): Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem. Cycles, 21, GB2015, doi:10.1029/2006GB002784.CrossRefGoogle Scholar
  28. Toba, Y. (1972): Local balance in the air-sea boundary process, I. On the growth process of wind waves. J. Oceanogr. Soc. Japan, 28, 109–120.CrossRefGoogle Scholar
  29. Toba, Y., S. Komori, Y. Suzuki and D. Zhao (2006): Similarity and dissimilarity in air-sea momentum and CO2 transfers: the nondimensional transfer coefficients in light of the windsea Reynolds number. p. 53–82. In Atmosphere-Ocean Interactions, Volume II, ed. by W. Perrie, WIT Press.Google Scholar
  30. Wanninkhof, R. (1992): Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res., 97, 7373–7381.CrossRefGoogle Scholar
  31. Wanninkhof, R. and W. R. McGillis (1999): A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett., 26, 1889–1892.CrossRefGoogle Scholar
  32. Wanninkhof, R., K. F. Sullivan and Z. Top (2004): Air-sea gas transfer in the Southern Ocean. J. Geophys. Res., 109, C08S19, doi:10.1029/2003JC001767.CrossRefGoogle Scholar
  33. Woolf, D. K. (1997): Bubbles and their role in gas exchange. p. 173–205. In The Sea Surface and Global Change, ed. by P. S. Liss and R. A. Duce, Cambridge Univ. Press, Cambridge.CrossRefGoogle Scholar
  34. Woolf, D. K. (2005): Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 87–94.Google Scholar
  35. Wu, J. (1980): Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727–740.CrossRefGoogle Scholar
  36. Yelland, M. J., B. I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings and V. C. Cornell (1998): Wind stress measurements of the open ocean drag coefficient corrected for air flow disturbance by the ship. J. Phys. Oceanogr., 28, 1511–1526.CrossRefGoogle Scholar
  37. Zhao, D. (2002): Preliminary study on wave characteristics in natural conditions. J. Ocean Univ. Qingdao, 32(6), 853–858 (in Chinese with English abstract).Google Scholar
  38. Zhao, D. and Y. Toba (2001): Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603–616.CrossRefGoogle Scholar
  39. Zhao, D., Y. Toba, Y. Suzuki and S. Komori (2003): Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter. Tellus, 55B, 478–487.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
  2. 2.Department of Marine, Earth and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations