Journal of Oceanography

, Volume 66, Issue 4, pp 553–569 | Cite as

Uncertainties in global mapping of Argo drift data at the parking level

  • Katsuro Katsumata
  • Hiroshi Yoshinari
Original Articles


We used Argo float drift data to estimate average ocean currents at 1000 dbar depth from early 2000 to early 2010. Our estimates cover the global oceans, except for marginal seas and ice-covered regions, at a resolution of 1 degree in latitude and longitude. The estimated flow field satisfies the horizontal boundary condition of no flow through the topography, and is in geostrophic balance. We also estimated the uncertainty in the average flow field, which had a typical magnitude of 0.03 ms−1. The uncertainty is relatively large (>0.03 ms−1 in both the zonal and meridional directions) near the Equator and in the Southern Ocean. The array bias, which is the bias due to the horizontal gradient in the spatial density of the float data, is generally negligible, with an average magnitude outside the equatorial region of 0.007 ms−1, becoming relatively large (>0.01 ms−1) only near the coastal regions. The measurement uncertainty is assumed to be spatially uniform and includes errors due to the Argos positioning system, internal clock drift, unknown surface drift before submerging or after surfacing, and unknown drifts during ascent and descent between the surface and the parking depth. We found that the overall uncertainty was not sensitive to the assumed value of the measurement uncertainty (ɛ m )1/2 when (ɛ m )1/2 < 0.01 ms−1 but it increased with (ɛ m )1/2 for (ɛ m )1/2 > 0.01 ms−1.


Argo floats absolute velocity objective mapping geostrophy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Böning, C. W. (1988): Characteristics of particle dispersion in the North Atlantic: an alternative interpretation of SOFAR float results. Deep-Sea Res., 35, 1379–1385.CrossRefGoogle Scholar
  2. Davis, R. E. (1983): Oceanic property transport, Lagrangian particle statistics, and their prediction. J. Mar. Res., 41, 163–194.CrossRefGoogle Scholar
  3. Davis, R. E. (1991): Observing the general circulation with floats. Deep-Sea Res., 38,Suppl. 1, S531–S571.Google Scholar
  4. Davis, R. E. (1998): Preliminary results from directly measuring middepth circulation in the tropical and South Pacific. J. Geophys. Res., 103, 24619–24639.CrossRefGoogle Scholar
  5. Davis, R. E. (2005): Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683–707.CrossRefGoogle Scholar
  6. Davis, R. E., D. C. Webb, L. A. Regier and J. Dufour (1992): The Autonomous Lagrangian Circulation Explorer (ALACE). J. Atmos. Oceanic Technol., 9, 264–285.CrossRefGoogle Scholar
  7. Gill, A. E. (1982): Atmosphere-Ocean Dynamics. Academic Press, California, 622 pp.Google Scholar
  8. Gille, S. T. (2008): Decadal-scale temperature trends in the Southern Hemisphere Ocean. J. Climate, 21, 4749–4765.CrossRefGoogle Scholar
  9. Gordon, A., D. Susanto, S. Wijffels, J. Sprintall, R. Molcard, H. Van Aken, A. Ffield, A. Supangat and I. Jaya (2008): Introduction/overview of INSTANT Indonesian Throughflow 2004–2006 as observed by INSTANT. Ocean Sciences Meeting, American Geophysical Union.Google Scholar
  10. Gouretski, V. V. and K. P. Koltermann (2004): WOCE Global Hydrographic Climatology. Bundesamtes für Seeschifffahrt und Hydrographie, Report 35.Google Scholar
  11. Hansen, P. C. (1992): Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34, 561–580.CrossRefGoogle Scholar
  12. Harlander, U., H. Ridderinkhof, M. W. Schouten and W. P. M. de Ruijter (2009): Long-term observations of transport, eddies, and Rossby waves in the Mozambique Channel. J. Geophys. Res., 114, C02003, doi:10.1029/2008JC004846.CrossRefGoogle Scholar
  13. Ichikawa, Y., Y. Takatsuki, K. Mizuno, N. Shikama and K. Takeuchi (2001): Estimation of drifting velocity and error at parking depth for Argo float. JAMSTECR, 44, 81–89.Google Scholar
  14. Ingleby, B. and M. Huddleston (2007): Quality control of ocean temperature and salinity profiles-historical and real-time data. J. Mar. Syst., 65, 158–175.CrossRefGoogle Scholar
  15. Lavender, K. L., W. B. Owens and R. E. Davis (2005): The mid-depth circulation of the subpolar North Atlantic Ocean as measured by subsurface floats. Deep-Sea Res. I, 52, 767–785.CrossRefGoogle Scholar
  16. Lebedev, K. V., H. Yoshinari, N. A. Maximenko and P. W. Hacker (2007): YoMaHa’07: Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Technical Note, 4(2). Available online at
  17. Lutjeharms, J. R. E. (2006): The Agulhas Current. Springer, Berlin, 329 pp.Google Scholar
  18. Masuda, S., T. Awaji, N. Sugiura, Y. Ishikawa, K. Baba, K. Horiuchi and N. Komori (2003): Improved estimates of the dynamical state of the North Pacific Ocean from a 4 dimensional variational data assimilation. Geophys. Res. Lett., 30, 1868, doi:10.1029/2003GL017604.CrossRefGoogle Scholar
  19. Masuda, S., T. Awaji, T. Toyoda, Y. Shikama and Y. Ishikawa (2009): Temporal evolution of the equatorial thermocline associated with the 1991–2006 ENSO. J. Geophys. Res., 114, C03015, doi:10.1029/2008JC004953.CrossRefGoogle Scholar
  20. Maximenko, N. A., B. Bang and H. Sasaki (2005): Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett., 32, L12607, doi:10.1029/2005GL02272.CrossRefGoogle Scholar
  21. McCartney, M. S. and K. A. Donohue (2007): A deep cyclonic gyre in the Australian-Antarctic Basin. Prog. Oceanogr., 75, 675–750.CrossRefGoogle Scholar
  22. Nakano, H. and H. Hasumi (2005): A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr., 35, 474–488.CrossRefGoogle Scholar
  23. Nowlin, W. D., Jr. and J. M. Klinck (1986): The physics of the Antarctic Circumpolar Current. Rev. Geophys., 24, 469–491.CrossRefGoogle Scholar
  24. Ollitrault, M. and J.-P. Rannou (2009): The mean-depth circulation of the Atlantic with Argo float displacements from the ANDRO Atlas (AOML and Coriolis Data only). Argo Science Workshop 3, Hangzhou, China.Google Scholar
  25. Ott, S. and J. Mann (2005): An experimental test of Corrsin’s conjecture and some related ideas. New J. Phys., 7, 142, doi:10.1088/1367-2630/7/1/142.CrossRefGoogle Scholar
  26. Park, J. J., K. Kim, B. A. King and S. C. Riser (2005): An advanced method to estimate deep currents from profiling floats. J. Atmos. Oceanic Technol., 22, 1294–1304.Google Scholar
  27. Qu, T., Y. Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida and T. Yamagata (2004): Can Luzon Strait Transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 3644–3657.CrossRefGoogle Scholar
  28. Ridgway, K. R. and J. R. Dunn (2007): Observational evidence for a Southern Hemisphere oceanic supergyre. Geophys. Res. Lett., 34, L13612, doi:10.1029/2007GL03039.CrossRefGoogle Scholar
  29. Ridgway, K. R., R. C. Coleman, R. J. Bailey and P. Sutton (2008): Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetry. J. Geophys. Res., 113, C08039, doi:10.1029/2007JC004664.CrossRefGoogle Scholar
  30. Roemmich, D. (2007): Super spin in the southern seas. Nature, 449, 34–35.CrossRefGoogle Scholar
  31. Roemmich, D., J. Gilson, R. Davis, P. Sutton, S. Wijffels and S. Riser (2007): Decadal spinup of the Southern Pacific subtropical gyre. J. Phys. Oceanogr., 26, 162–173.CrossRefGoogle Scholar
  32. Shlien, D. J. and S. Corrsin (1974): A measurement of Lagrangian velocity autocorrelation in approximately isotropic turbulence. J. Fluid Mech., 62, 255–271.CrossRefGoogle Scholar
  33. Uchida, H. and M. Fukasawa (2005): WHP P6, A10, I3/I4 Revisit data book, vol. 2. JAMSTEC, Yokosuka, Japan, 129 pp. Available online at
  34. Wijffels, S. E., J. M., Toole and R. Davis (2001): Revisiting the South Pacific subtropical circulation: A synthesis of World Ocean Circulation Experiment observations along 32°S. J. Geophys. Res., 106, 19481–19513.CrossRefGoogle Scholar
  35. Wunsch, C. (2006): Discrete Inverse and State Estimation Problems with Geophysical Fluid Applications. Cambridge University Press, Cambridge, 371 pp.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Research Institute for Global ChangeJAMSTECNatsushima, YokosukaJapan
  2. 2.Hokkaido National Fisheries Research InstituteFisheries Research AgencyKatsurakoi, KushiroJapan

Personalised recommendations