Journal of Oceanography

, Volume 66, Issue 4, pp 439–473 | Cite as

A review of satellite-based microwave observations of sea surface temperatures

  • Kohtaro HosodaEmail author


Satellite-based microwave radiometers can measure sea surface temperature (SST) over wide areas, even under cloud cover, owing to the weak absorption of microwaves by cloud droplets. This advantage is not available in the case of infrared observations, hence SST data derived from microwave radiometers have been widely used for operational and research purposes in recent years. This paper reviews the significant algorithms, validations, and applications related to microwave observation of SST. The history and specifications of past and present microwave radiometers are also documented. Various physical properties, including sea surface salinity, sea surface wind, molecules in the atmosphere, and clouds, affect the accuracy of SST data estimated by satellite-based microwave radiometers. Estimation algorithms are designed to correct these effects by using microwave measurements in several frequency channels and by using data of ancillary geophysical parameters. Validation studies have shown that microwave radiometer SST data have high accuracy that is comparable to the accuracy of data obtained from infrared measurements. However, certain persistent problems, such as sea-surface wind correction, remain to be solved.


Sea surface temperature satellite observation microwave measurement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alishouse, J. C., J. B. Snider, E. R. Westwater, C. T. Swift, C. S. Ruf, S. A. Snyder, J. Vongsathorn and R. R. Ferraro (1990a): Determination of cloud liquid water content using the SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 817–822.CrossRefGoogle Scholar
  2. Alishouse, J. C., S. A. Snyder, J. Vongsathorn and R. R. Ferraro (1990b): Determination of oceanic total precipitable water from SSM/I. IEEE Trans. Geosci. Remote Sens., 28, 811–816.CrossRefGoogle Scholar
  3. Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd and E. P. Shettle (1986): AFGL atmospheric constituent profiles (0–120 km). AFGL-TR-0208 Environmental Research Papers 954, Air Force Geophysics Laboratory, Hanscom AFB, MA, 43 pp.Google Scholar
  4. Arai, K. and J. Sakakibara (2006): Estimation of sea surface temperature, wind speed and water vapor with microwave radiometer data based on simulated annealing. Adv. Space Res., 37, 2202–2207.CrossRefGoogle Scholar
  5. Asher, W. E. and R. Wanninkhof (1998): The effect of bubblemediated gas transfer on purposeful dual-gaseous tracer experiments. J. Geophys. Res., 103, 10555–10560.CrossRefGoogle Scholar
  6. Baretta-Bekker, J. G., E. K. Duursma and B. R. Kuipers (eds.) (2002): Encyclopedia of Marine Sciences. 2nd corr., and enlarged edition, Springer, New York, 357 pp.Google Scholar
  7. Basharinov, A. E. and A. M. Shutko (1980): Research into the measurement of sea state, sea temperature and salinity by means of microwave radiometry. Boundary-Layer Meteorol., 18, 55–64.CrossRefGoogle Scholar
  8. Bauer, P. and P. Schluessel (1993): Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data. J. Geophys. Res., 98, 20737–20759.CrossRefGoogle Scholar
  9. Beggs, H., N. Smith, G. Warren and A. Zhong (2006): A method for blending high-resolution SST over the Australian region. BMRC Research Letter No. 5, Bureau of Meteorology Research Centre, 7–11.Google Scholar
  10. Bhat, G. S., G. A. Vecchi and S. Gadgil (2004): Sea surface temperature of the Bay of Bengal derived from TRMM Microwave Imager. J. Atmos. Oceanic Technol., 21, 1283–1290.CrossRefGoogle Scholar
  11. Bréon, F. M. and N. Henriot (2006): Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions. J. Geophys. Res., 111, doi:10.1029/2005JC003343.Google Scholar
  12. Camps, A., J. Font, M. Vall-llossera, I. Corbella, N. Duffo, F. Torres, S. Blanch, A. Aguasca, R. Villarino, C. Gabarró, L. Enrique, J. Miranda, R. Sabia and M. Talone (2008): Determination of the sea surface emissivity at L-band and application to SMOS salinity retrieval algorithms: Review of the contributions of the UPC-ICM. Radio Sci., 43, doi:10.1029/2007RS003728.Google Scholar
  13. Chelton, D. B. and F. J. Wentz (2005): Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteorol. Soc., 86, 1097–1115.CrossRefGoogle Scholar
  14. Chelton, D. B., S. K. Esbensen, M. G. Schlax, N. Thum, M. H. Freilich, F. J. Wentz, C. L. Gentemann, M. J. McPhaden and P. S. Schopf (2001): Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498.CrossRefGoogle Scholar
  15. Chelton, D. B., M. G. Schlax and R. M. Samelson (2007): Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37, 495–517.CrossRefGoogle Scholar
  16. Chen, D., L. Tsang, L. Zhou, S. C. Reising, W. E. Asher, L. A. Rose, K.-H. Ding and C.-T. Chen (2003): Microwave emission and scattering of foam based on Monte Carlo simulations of dense media. IEEE Trans. Geosci. Rem. Sens., 41, 782–790.CrossRefGoogle Scholar
  17. Cole, K. and R. H. Cole (1941): Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys., 9, 341–531.CrossRefGoogle Scholar
  18. Cox, C. and W. Munk (1954a): Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opti. Soc. Amer., 44, 838–850.CrossRefGoogle Scholar
  19. Cox, C. and W. Munk (1954b): Statistics of the sea surface derived from sun glitter. J. Mar. Res., 13, 198–227.Google Scholar
  20. Cruz Pol, S., C. Ruf and S. Keihm (1998): Improved 20–32 GHz atmospheric absorption model. Radio Sci., 33, 1319–1333.CrossRefGoogle Scholar
  21. de Souza, R. B., M. M. Mata, C. A. E. Garcia, M. Kampel, E. N. Oliveira and J. A. Lorenzzetti (2006): Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil-Malvinas Confluence region. Remote Sens. Environ., 100, 52–66.CrossRefGoogle Scholar
  22. Debye, P. (1929): Polar Molecules. Chemical Catalog, New York, 172 pp.Google Scholar
  23. Dong, S., S. T. Gille, J. Sprintall and C. Gentemann (2006a): Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111, doi:10.1029/2005JC002934.Google Scholar
  24. Dong, S., J. Sprintall and S. T. Gille (2006b): Location of the Antarctic Polar Front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr., 36, 2075–2089.CrossRefGoogle Scholar
  25. Donlon, C., I. Robinson, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, O. Arino, C. L. Gentemann, D. May, P. LeBorgne, J. Piollé, I. Barton, H. Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A. Harris, G. Wick, B. Emery, P. Minnett, R. Evans, D. Llewellyn-Jones, C. Mutlow, R. W. Reynolds, H. Kawamura and N. Rayner (2007): The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Amer. Meteorol. Soc., 88, 1197–1213.CrossRefGoogle Scholar
  26. Donlon, C. J., P. J. Minnett, C. L. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward and M. J. Murray (2002): Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353–369.CrossRefGoogle Scholar
  27. Donlon, C. J., L. Nykjaer and C. L. Gentemann (2004): Using sea surface temperature measurements from microwave and infrared satellite measurements. Inter. J. Remote Sens., 25, 1331–1336.CrossRefGoogle Scholar
  28. Durden, S. P. and J. F. Vesecky (1985): A physical radar cross-section model for wind-driven sea with swell. IEEE J. Oceanic Eng., OE-10, 445–451.CrossRefGoogle Scholar
  29. Ebuchi, N. and S. Kizu (2002): Probability distribution of sur face wave slope derived using sun glitter images from Geostationary Meteorological Satellite and surface vector winds from scatterometers. J. Oceanogr., 58, 477–486.CrossRefGoogle Scholar
  30. Ellison, W., A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou and C. Prigent (1998): New permittivity measurements of seawater. Radio Sci., 33, 639–648.CrossRefGoogle Scholar
  31. Emery, B., D. Matthews and D. Baldwin (2004): Mapping surface coastal currents with satellite imagery and altimetry. Geoscience and Remote Sensing Symposium, 2004 IGARSS’ 04 Proceedings. 2004 IEEE International, 1, 655.Google Scholar
  32. Emery, W. J., A. C. Thomas, M. J. Collins, W. R. Crawford and D. L. Mackas (1986): An objective method for computing advective surface velocities from sequential infrared satellite images. J. Geophys. Res., 91, 12865–12878.CrossRefGoogle Scholar
  33. Essen, L. and K. D. Froome (1951): The refractive indices and dielectric constants for air and its principal constituents at 24,000 mc/s. Proc. Phys. Soc. B, 64, 862–875, doi:10.1088/0370-1301/64/10/303.CrossRefGoogle Scholar
  34. Ferraro, R. R., F. Weng, N. C. Grody and A. Basist (1996): An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteorol. Soc., 77, 891–905.CrossRefGoogle Scholar
  35. Ffield, A. (2005): North Brazil current rings viewed by TRMM Microwave Imager SST and the influence of the Amazon Plume. Deep-Sea Res., 52, 137–160.CrossRefGoogle Scholar
  36. Font, J., G. S. E. Lagerloef, D. M. Le Vine, A. Camps and O.-Z. Zanifé (2004): The determination of surface salinity with European SMOS space mission. IEEE Trans. Geosci. Remote Sens., 42, 2196–2205.CrossRefGoogle Scholar
  37. Frelich, M. H., D. G. Long and M. W. Spencer (1994): SeaWinds: a scanning scatterometer for ADEOS-II—Science overview. Geoscience and Remote Sensing Symposium, 1994. IGARSS’ 94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation., International, 2, 960–963.Google Scholar
  38. Friedman, D. (1969): Infrared characteristics of ocean water (1.5–15 μ). Appl. Opt., 8, 2073–2078.CrossRefGoogle Scholar
  39. Gaiser, P. W., K. M. S. Germain, E. M. Twaorog, G. A. Poe, W. Purdy, D. Richardson, W. Grossman, W. L. Jones, D. Spencer, G. Golba, J. Cleveland, L. Choy, R. M. Bevilacqua and P. S. Chang (2004): The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Rem. Sens., 42, 2347–2361.CrossRefGoogle Scholar
  40. Gatebe, C. K., M. D. King, G. T. Arnold and J. Redemann (2005): Airborne spectral measurements of ocean directional reflectance. J. Atmos. Sci., 62, 1072–1092.CrossRefGoogle Scholar
  41. Gentemann, C. L., C. J. Donlon, A. Stuart-Menteth and F. J. Wentz (2003): Diurnal signals in satellite sea surface temperature measurements. Geophys. Res. Lett., 30, doi:10.1029/2002GL016291.Google Scholar
  42. Gentemann, C. L., F. J. Wentz, C. A. Mears and D. K. Smith (2004): In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res., 109, doi:10.1029/2003JC002092.Google Scholar
  43. Gloersen, P. and F. T. Barath (1977): A scanning multichannel microwave radiometer for Nimbus-G and Seasat-A. IEEE J. Oceanic Eng., OE-2, 172–178.CrossRefGoogle Scholar
  44. Goody, R. M. and Y. L. Yung (1989): Atmospheric Radiation: Theoretical Basis. 2nd ed., Oxford University Press, 519 pp.Google Scholar
  45. Grant, E. H., T. J. Buchanan and H. F. Cook (1957): Dielectric behavior of water at microwave frequencies. J. Chem. Phys., 26, 156–161.CrossRefGoogle Scholar
  46. Greenwald, T. J., G. L. Stephens, T. H. V. Haar and D. L. Jackson (1993): A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18471–18488.CrossRefGoogle Scholar
  47. Gua, J., L. Tsang, W. Asher, K.-H. Ding and C.-T. Chen (2001): Applications of dense media radiative transfer theory for passive microwave remote sensing of foam covered ocean. IEEE Trans. Geosci. Remote Sens., 39, 1019–1027.CrossRefGoogle Scholar
  48. Guan, L. and H. Kawamura (2003): SST availability of satellite infrared and microwave measurements. J. Oceanogr., 59, 201–209.CrossRefGoogle Scholar
  49. Guan, L. and H. Kawamura (2004): Merging satellite infrared and microwave SSTs: Methodlogy and evaluation of the new SST. J. Oceanogr., 60, 905–912.CrossRefGoogle Scholar
  50. Hashizume, H., S.-P. Xie, W. T. Liu and K. Takeuchi (2001): Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res., 106, 10173–10185.CrossRefGoogle Scholar
  51. Hasted, J. B., D. M. Ritson and C. H. Collie (1948): Dielectric properties of aqueous ionic solution. Part I and II. J. Chem. Phys., 16, 1–21.CrossRefGoogle Scholar
  52. He, R., R. H. Weisberg, H. Zhang, F. E. Muller-Karger and R. W. Helber (2003): A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf. Geophys. Res. Lett., 30, doi:10.1029/2003GL017673.Google Scholar
  53. Henderson, B. G., J. Theiler and P. Villeneuve (2003): The polarized emissivity of a wind-roughened sea surface: A Monte Carlo model. Remote Sens. Environ., 88, 453–467.CrossRefGoogle Scholar
  54. Hollinger, J. P. (1971): Passive microwave measurements of sea surface roughness. IEEE Trans. Geosci. Elec., GE-3, 165–169.CrossRefGoogle Scholar
  55. Hollinger, J. P. and R. C. Lo (1984a): Determination of sea surface temperature with N-ROSS. Naval Research Laboratory Memorandum Report, Naval Research Laboratory, 63.Google Scholar
  56. Hollinger, J. P. and R. C. Lo (1984b): Low-frequency microwave radiometer for N-ROSS. OCEANS, 167–174 (available online from
  57. Hollinger, J. P., J. L. Peiece and G. A. Poe (1991): SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781–790.CrossRefGoogle Scholar
  58. Hosoda, K., H. Murakami, A. Shibata, F. Sakaida and H. Kawamura (2006): Difference characteristics of sea surface temperature observed by GLI and AMSR aboard ADEOSII. J. Oceanogr., 62, 339–350.CrossRefGoogle Scholar
  59. Hosoda, K., H. Murakami, F. Sakaida and H. Kawamura (2007): Algorithm and validation of sea surface temperature observation using MODIS sensors aboard Terra and Aqua in the western North Pacific. J. Oceanogr., 63, 267–280.CrossRefGoogle Scholar
  60. Huang, N. E. and R. Long (1980): An experimental study of the surface elevation probability distribution and statistics of wind-generated waves. J. Fluid Mech., 101, 179–200.CrossRefGoogle Scholar
  61. Hufford, G. (1991): A model for the complex permittivity of ice at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12, 677–682.CrossRefGoogle Scholar
  62. Hwang, P. A. and O. H. Shemdin (1988): The dependence of sea surface slope on atmospheric stability and swell conditions. J. Geophys. Res., 93, 13903–13912.CrossRefGoogle Scholar
  63. Imaoka, K., Y. Fujimoto, T. Takeshima, T. Igarashi, T. Kawanishi and A. Shibata (2003): Status of calibration and data evaluation of AMSR on board ADEOS-II. Proc. SPIE, Barcelona, Spain, 5234, 28–35.Google Scholar
  64. Irisov, V. G. (2000): Azimuthal variations of the microwave radiation from a slightly non-Gaussian sea surface. Radio Sci., 35, 65–82.CrossRefGoogle Scholar
  65. Isern-Fontanet, J., B. Chapron, G. Lapeyre and P. Klein (2006): Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, doi:10.1029/2006GL027801.Google Scholar
  66. Iskander, M. (1992): Electromagnetic Fields and Waves. Prentice-Hall Englewood Cliffs, NJ, 756 pp.Google Scholar
  67. Jones, C., P. Peterson and C. Gautier (1999): A new method for deriving ocean surface specific humidity and air temperature: An artificial neural network approach. J. Appl. Meteorol., 38, 1229–1245.CrossRefGoogle Scholar
  68. Jung, T., E. Ruprecht and F. Wagner (1998): Determination of cloud liquid water over oceans from special sensor microwave/imager (SSM/I) data using neural networks. J. Appl. Meteorol., 37, 832–844.CrossRefGoogle Scholar
  69. Karstens, U., C. Simmer and E. Ruprecht (1993): Remote sensing of cloud liquid water. Meteorol. Atmos. Phys., 54, 157–171.CrossRefGoogle Scholar
  70. Katsaros, K. B. (1980): The aqueous thermal boundary layer. Boundary-Layer Meteorol., 18, 107–127.CrossRefGoogle Scholar
  71. Kawai, Y. and A. Wada (2007): Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. J. Oceanogr., 63, 721–744.CrossRefGoogle Scholar
  72. Kawai, Y., H. Kawamura, S. Takahashi, K. Hosoda, H. Murakami, M. Kachi and L. Guan (2006): Satellite-based high-resolution global optimum interpolation sea surface temperature data. J. Geophys. Res., 111, doi:10.1029/2005J003313.Google Scholar
  73. Kawanishi, T., T. Sezai, Y. Ito, K. Imaoka, Y. Ishida, A. Shibata, M. Miura, H. Inahata and R. W. Spencer (2003): The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194.CrossRefGoogle Scholar
  74. Kelley, C. S. (1978): Effective infrared optical depths associated with the clear ocean. Appl. Opt., 17, 3054–3059.CrossRefGoogle Scholar
  75. Kilpatrick, K. A., G. P. Podestá and R. Evans (2001): Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 101, 9179–9197.CrossRefGoogle Scholar
  76. Kirkpatrick, S., C. D. Gelatt and M. O. Vecchi (1983): Optimization by simulated annealing. Science, 220, 671–680.CrossRefGoogle Scholar
  77. Klein, L. A. and C. Swift (1977): An improved model for the dielectric constant of sea water at microwave frequencies. IEEE J. Oceanic Eng., OE-2, 104–111.CrossRefGoogle Scholar
  78. Krasnopolsky, V. M. (2007): Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev. Geophys., 45, doi:10.1029/2006RG000200.Google Scholar
  79. Krasnopolsky, V. M. and H. Schiller (2003): Some neural network applications in environmental sciences: Part I: forward and inverse problems in geophysical remote measurements. Neural Networks, 16, 321–334.CrossRefGoogle Scholar
  80. Krasnopolsky, V. M., W. H. Gemmill and L. C. Breaker (2000): A neural network multiparameter algorithm for SSM/I ocean retrievals: Comparisons and validations. Remote Sens. Environ., 73, 133–142.CrossRefGoogle Scholar
  81. Kummerow, C., W. Barnes, T. Kozo, J. Shiue and J. Simpson (1998): The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.CrossRefGoogle Scholar
  82. Lafon, C., J. Piazzola, P. Forget, O. Le Calve and S. Despiau (2004): Analysis of the variations of the whitecap fraction as measured in a coastal zone. Boundary-Layer Meteorol., 111, 339–360.CrossRefGoogle Scholar
  83. Le Traon, P. Y., M. Rienecker, N. R. Smith, P. Bahurel, M. Bell, H. Hurlbert and P. Dandin (2001): Operational oceanography and prediction: A GODAE perspective. Observing the Ocean in the 21st Century, GODAE Project Office, chapter 6.2, 529–545.Google Scholar
  84. Liboff, R. (1992): Introductory Quantum Mechanics. 2nd ed., Addison Wesley Publishing Company, London, 782 pp.Google Scholar
  85. Liebe, H. J. (1985): An updated model for millimeter wave propagation in moist air. Radio Sci., 20, 1069–1089.CrossRefGoogle Scholar
  86. Liebe, H. J. (1989): MPM—An atmospheric millimeter wave propagation model. Int. J. Infrared Milimeter Waves, 10, 631–650.CrossRefGoogle Scholar
  87. Liebe, H. J. and D. H. Layton (1987): Millimeter-wave properties of the atmosphere: Laboratory studies and propagation modeling. NTIA Rep. 87–224, National Telecommunications and Information Administration, Boulder, CO, 74 pp. (online available from Scholar
  88. Liebe, H. J., T. Manabe and G. A. Hufford (1989): Millimeterwave attenuation and delay rates due to fog/cloud condition. IEEE Trans. Antennas and Propag., 37, 1617–1623.CrossRefGoogle Scholar
  89. Liebe, H. J., G. A. Hufford and T. Manabe (1991): A model for the complex permittivity of water at frequencies below 1 THz. Int. J. Infrared Millimeter Waves, 12, 659–675.CrossRefGoogle Scholar
  90. Liebe, H. J., P. W. Rosenkranz and G. A. Hufford (1992): Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spectrosc. Radiat. Transfer, 48, 629–643.CrossRefGoogle Scholar
  91. Liebe, H. J., G. A. Hufford and M. G. Cotton (1993): Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000GHz. AGARD 52nd Specialists’ Meeting of the Electromagnetic Wave Propagation Panel, Ch. 3.Google Scholar
  92. Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato and X. Dong (2001): A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14485–14500.CrossRefGoogle Scholar
  93. Lin, I., W. T. Liu, C.-C. Wu, G. T. F. Wong, C. Hu, Z. Chen, W.-D. Liang, Y. Yang and K.-K. Liu (2003a): New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett., 30, doi:10.1029/2003GL017141.Google Scholar
  94. Lin, I.-I., W. T. Liu, C.-C. Wu, J. C. H. Chiang and C.-H. Sui (2003b): Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, doi:10.1029/2002GL015674.Google Scholar
  95. Liu, W. T., X. Xie and P. P. Niiler (2007): Ocean-atmosphere interaction over Agulhas Extension Meanders. J. Climate, 20, 5784–5797.CrossRefGoogle Scholar
  96. Liu, Y., X.-H. Yan, W. T. Liu and P. A. Hwang (1997): The probability density function of ocean surface slopes and its effects on radar backscatter. J. Phys. Oceanogr., 27, 782–797.CrossRefGoogle Scholar
  97. Lojou, J.-Y., R. Benard and L. Ermard (1994): A simple method for testing brightness temperatures from satellite microwave radiometers. J. Atmos. Oceanic Technol., 11, 387–400.CrossRefGoogle Scholar
  98. Longuet-Higgins, M. S. (1975): On the joint distribution of the period and amplitudes of sea waves. J. Geophys. Res., 80, 2688–2694.CrossRefGoogle Scholar
  99. Lumley, J. (1970): Stochastic Tools in Turbulence. Academic Press, New York, 194 pp.Google Scholar
  100. Masuda, K. (1998): Wind direction effect on sea surface emissivity. Papers in Meteorology and Geophysics, 48, 115–122.CrossRefGoogle Scholar
  101. Masuda, K., T. Takashima and Y. Takayama (1988): Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ., 24, 313–329.CrossRefGoogle Scholar
  102. McAlister, E. D. and W. McLeish (1970): A radiometric system for airborne measurement of the total heat flow from the sea. Appl. Opt., 9, 2697–2705.CrossRefGoogle Scholar
  103. McClain, E. P., W. G. Pichel and C. C. Walton (1985): Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11587–11601.CrossRefGoogle Scholar
  104. Meissner, T. and F. J. Wentz (2004): The complex dielectric constant of pure and sea water from microwave satellite observation. IEEE Trans. Geosci. Remote Sens., 42, 1836–1849.CrossRefGoogle Scholar
  105. Meissner, T. and F. J. Wentz (2006): Ocean retrievals for WindSat: Radiative transfer model, algorithm, validation. The 9th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications, paper number Catalog #06EX1174C (available from
  106. Meng, L., Y. He, J. Chen and Y. Wu (2007): Neural network retrieval of ocean surface parameters from SSM/I data. Mon. Wea. Rev., 135, 586–597.CrossRefGoogle Scholar
  107. Milman, A. S. and T. T. Wilheit (1985): Sea surface temperatures from the Scanning Multichannel Microwave Radiometer on Nimbus 7. J. Geophys. Res., 90, 11631–11641.CrossRefGoogle Scholar
  108. Misra, T., A. M. Jha, D. Putrevu, J. Rao, D. B. Dave and S. S. Rana (2002): Ground calibration of Multifrequency Scanning Microwave Radiometer (MSMR). IEEE Trans. Geosci. Remote Sens., 40, 504–508.CrossRefGoogle Scholar
  109. Monahan, E. C. (1993): Occurrence and evolution of acoustically relevant sub-surface bubble plumes and their associated, remotely monitorable, surface whitecaps. p. 503–517. In Natural Physical Sources of Underwater Sound, ed. by B. R. Kerman, Kluwer Academic Publishers, The Netherlands.Google Scholar
  110. Monahan, E. C. (2001): Whitecaps and Foam. p. 3213–3219. In Encyclopedia of Ocean Sciences, 6, ed. by J. Steele, S. Thorpe and K. Turekian, Academic Press, New York.Google Scholar
  111. Monahan, E. C. and I. G. ÓMuircheartaigh (1980): Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 2094–2099.CrossRefGoogle Scholar
  112. Monahan, E. C. and I. G. ÓMuircheartaigh (1986): Whitecaps and the passive remote sensing of the ocean surface. Int. J. Remote Sens., 7, 627–642.CrossRefGoogle Scholar
  113. Monahan, E. C. and D. Woolf (1989): Comments on “Variation of whitecap coverage with wind stress and water temperature”. J. Phys. Oceanogr., 19, 706–709.CrossRefGoogle Scholar
  114. Niclòs, R., V. Caselles, E. Valor and C. Coll (2007): Foam effect on the sea surface emissivity in the 8–14 μm region. J. Geophys. Res., 112, doi:10.1029/2007JC004521.Google Scholar
  115. Njoku, E. G. (1982): Passive microwave remote sensing of the Earth from space—A review. IEEE Proceedings, 70, 728–750 (available from = 1456648).CrossRefGoogle Scholar
  116. Njoku, E. G. and L. Swanson (1983): Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry. Mon. Wea. Rev., 111, 1977–1987.CrossRefGoogle Scholar
  117. Nonaka, M. and S.-P. Xie (2003): Co-variation of sea surface temperature and wind over Kuroshio and its Extension: Evidence for ocean-to-atmospheric feedback. J. Climate, 16, 1404–1413.CrossRefGoogle Scholar
  118. O’Carroll, A. G., J. G. Watts, L. A. Horrocks, R. W. Saunders and N. A. Rayner (2006): Validation of the AATSR Meteo product sea surface temperature. J. Atmos. Oceanic Technol., 23, 711–726.CrossRefGoogle Scholar
  119. O’Neill, L. W., D. B. Chelton and S. Esbensen (2005): High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 2706–2723.CrossRefGoogle Scholar
  120. Oziebo, A. and J. Etcheto (1991): A method for masking microwave radiometer data polluted by the presences of land and sea ice. Int. J. Remote Sens., 12, 2379–2388.CrossRefGoogle Scholar
  121. Parekh, A., R. Shrma and A. Sarkar (2007): A comparative assessment of sea wind speed and sea surface temperature over the Indian Ocean by TMI, MSMR, and ERA-40. J. Atmos. Oceanic Technol., 24, 1131–1142.CrossRefGoogle Scholar
  122. Peake, W. H. (1959): Interaction of electromagnetic waves with some natural surfaces. IEEE Trans. Antennas and Propag., 7, 324–329.CrossRefGoogle Scholar
  123. Petty, G. W. (1994): Physical retrievals of over ocean rain rate from multichannel microwave imaging. Part II; Algorithm implementation. Meteorol. Atmos. Phys., 54, 101–122.CrossRefGoogle Scholar
  124. Petty, G. W. and K. B. Katsaros (1994): The response of the SSM/I to the marine environment. Part II: A parameterization of the effect of the sea surface slope distribution on emission and reflection. J. Atmos. Oceanic Technol., 11, 617–628.CrossRefGoogle Scholar
  125. Quartly, G. D. and M. A. Srokosz (2002): SST observations of the Agulhas and East Madagascar Retroflections by the TRMM Microwave Imager. J. Phys. Oceanogr., 32, 1585–1592.CrossRefGoogle Scholar
  126. Reynolds, R. W. and T. M. Smith (1994): Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–949.CrossRefGoogle Scholar
  127. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang (2002): An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  128. Reynolds, R. W., C. L. Gentemann and F. Wentz (2004): Impact of TRMM SSTs on a climate-scale SST analysis. J. Climate, 17, 2938–2952.CrossRefGoogle Scholar
  129. Reynolds, R. W., T. M. Smith, C. Liu, D. B. C. K. S. Casey and M. G. Schlax (2007): Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.CrossRefGoogle Scholar
  130. Ricciardulli, L. and F. J. Wentz (2004): Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM. J. Geophys. Res., 109, doi:10.1029/2003JC002247.Google Scholar
  131. Rice, S. O. (1951): Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math., 4, 351–378.CrossRefGoogle Scholar
  132. Robinson, I. S., J.-F. Piollè, P. Leborgne, C. Donlon and O. Arino (2005): MEDSPIRATION: A European contribution to the global ocean data assimilation experiment high resolution sea surface temperature pilot project. Proceedings of the MERIS (A) ATSR Workshop 2005 (CD-ROM), 7 pp.Google Scholar
  133. Rose, L. A., W. E. Asher, S. C. Reising, P. W. Gaiser, M. S. Germain, D. J. Dowgiallo, K. A. Horgan, G. Farquharson and E. J. Knapp (2002): Radiometric measurements of the microwave emissivity of foam. IEEE Trans. Geosci. Remote Sens., 40, 2619–2625.CrossRefGoogle Scholar
  134. Sakaida, F., H. Kawamura, S. Takahashi, T. Shimada, Y. Kawai, K. Hosoda and L. Guan (2009): Research, development, and demonstration operation of the new generation sea surface temperature for open ocean (NGSST-O) product. J. Oceanogr., 65, 859–870.CrossRefGoogle Scholar
  135. Sakurai, T., Y. Kurihara and T. Kuragano (2005): Merged satellite and in-situ data global daily sst. Geoscience and Remote Sensing Symposium, 2005. IGARSS’ 05. Proceedings. 2005 IEEE International, 4, 2606–2608.CrossRefGoogle Scholar
  136. Salisbury, J. W., D. M. D’Aria and F. F. Sabins, Jr. (1993): Thermal infrared remote sensing of crude oil slicks. Remote Sens. Environ., 45, 225–231.CrossRefGoogle Scholar
  137. Sallée, J.-B., N. Wienders, K. Speer and R. Morrow (2006): Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn., 56, 525–542.CrossRefGoogle Scholar
  138. Saunders, P. M. (1967): The temperature at the ocean-air interface. J. Atmos. Sci., 24, 269–273.CrossRefGoogle Scholar
  139. Shae, J. A. and J. H. Churnside (1997): Scanning-laser glint measurements of sea-surface slope statistics. Appl. Opt., 36, 4202–4213.CrossRefGoogle Scholar
  140. Shankar, D., S. R. Shetye and P. V. Joseph (2007): Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal. J. Earth Syst. Sci., 116, 385–406.CrossRefGoogle Scholar
  141. Sharkov, E. A. (2004): Passive Microwave Remote Sensing of the Earth: Physical Foundations. Springer Praxis Books/Geophysical Sciences, Springer Verlag, Berlin, 613 pp.Google Scholar
  142. Sharma, R., K. N. Babu, A. K. Mathur and M. M. Ali (2002): Identification of large scale atmospheric and oceanic features from IRS-P4 Multifrequency Scanning Microwave Radiometer: Preliminary results. J. Atmos. Oceanic Technol., 19, 1127–1134.CrossRefGoogle Scholar
  143. Shibata, A. (1994): Determination of water vapor and liquid water content by iterative method. Meteorol. Atmos. Phys., 54, 173–181.CrossRefGoogle Scholar
  144. Shibata, A. (2003): A change of microwave radiation from the ocean urface induced by air-sea temperature difference. Radio Sci., 38, 8063–8072.CrossRefGoogle Scholar
  145. Shibata, A. (2004): AMSR/AMSR-E SST algorithm developments—removal of ocean wind effect—. Italian J. Remote Sens., 30/31, 131–142.Google Scholar
  146. Shibata, A. (2006): Features of ocean microwave emission changed by wind at 6 GHz. J. Oceanogr., 62, 321–330.CrossRefGoogle Scholar
  147. Shibata, A. (2007): Effect of air-sea temperature difference on ocean microwave brightness temperature estimated from AMSR, SeaWinds, and buoys. J. Oceanogr., 63, 863–872.CrossRefGoogle Scholar
  148. Shibata, A., K. Imaoka, M. Kachi and H. Murakami (1999): SST observation by TRMM Microwave Imager aboard Tropical Rainfall Measuring Mission. Umi no Kenkyu, 8, 135–139 (in Japanese with English abstract and captions).Google Scholar
  149. Smitha, A., K. H. Rao and D. Sengupta (2006): Effect of May 2003 tropical cyclone on physical and biological processes in the Bay of Bengal. Int. J. Remote Sens., 27, 5301–5314.CrossRefGoogle Scholar
  150. Stacey, E. N. J. and F. Barath (1980): The Seasat scanning multichannel microwave radiometer (SMMR): Instrument description and performance. IEEE J. Oceanic Eng., OE-5, 100–115.Google Scholar
  151. Stammer, D., F. Wentz and C. Gentemann (2003): Validation of microwave sea surface temperature measurements for climate purposes. J. Climate, 16, 73–87.CrossRefGoogle Scholar
  152. Stogryn, A. (1967): The apparent temperature of the sea at microwave frequencies. IEEE Trans. Antennas and Propag., AP-15, 278–286.CrossRefGoogle Scholar
  153. Stogryn, A. (1971): Equations for calculating the dielectric constant of saline water. IEEE Trans. Microwave Theory Tech., MTT-19, 733–736.CrossRefGoogle Scholar
  154. Stogryn, A. (1972): The emissivity of sea foam at microwave frequencies. J. Geophys. Res., 77, 1650–1666.CrossRefGoogle Scholar
  155. Stogryn, A. P., C. T. Butler and T. J. Bartolac (1994): Ocean surface wind retrievals from special sensor microwave imager data with neural networks. J. Geophys. Res., 99, 981–984.CrossRefGoogle Scholar
  156. Stramska, M. and T. Petelski (2003): Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res., 108, doi:10.1029/2002JC001321.Google Scholar
  157. Stratonovich, R. L. (1963): Topics in the Theory of Random Noise. Gordon and Breach, New York.Google Scholar
  158. Su, W., T. P. Charlock and K. Rutledge (2002): Observations of reflectance distribution around sunglint from a coastal ocean platform. Appl. Opt., 41, 7369–7383.CrossRefGoogle Scholar
  159. Sugihara, Y., H. Tsumori, T. Ohga, H. Yohioka and S. Serizawa (2007): Variation of whitecap coverage with wave-field conditions. J. Mar. Sys., 66, 47–60.CrossRefGoogle Scholar
  160. Swanson, P. N. and A. L. Riley (1980): The Seasat scanning multichannel microwave radiometer SMMR: Radiometric calibration algorithm development and performance. IEEE J. Oceanic. Eng., OE-5, 116–124.CrossRefGoogle Scholar
  161. Swift, C. T. (1980): Passive microwave remote sensing of the ocean—A review. Bound.-Layer Meteorol., 18, 25–54.CrossRefGoogle Scholar
  162. Tang, S. and O. H. Shemdin (1983): Measurement of high frequency waves using a wave follower. J. Geophys. Res., 88, 9832–9840.CrossRefGoogle Scholar
  163. Tsintikidis, D., J. L. Haferman, E. N. Anagnostou, W. F. Krajewski and T. F. Smith (1997): A neural network approach to estimating rainfall from spaceborne microwave data. IEEE Trans. Geosci. Remote Sens., 35, 1079–1093.CrossRefGoogle Scholar
  164. Ulaby, F., R. E. Moore and A. K. Fung (1981): Microwave Remote Sensing: Active and Passive Vol. I Microwave Remote Sensing Fundamentals and Radiometry. Number 2 in Remote Sensing: A series of advanced level textbooks and reference works, Addison-Wesley Pub., MA, 456 pp.Google Scholar
  165. Van den Dool, H. M., S. Saha and Å. Johansson (2000): Empirical orthogonal teleconnections. J. Climate, 13, 1421–1435.CrossRefGoogle Scholar
  166. Vecchi, G. A., S.-P. Xie and A. S. Fischer (2004): Ocean-atmosphere corvariability in the Western Arabian Sea. J. Climate, 17, 1213–1224.CrossRefGoogle Scholar
  167. Wallace, J. M., T. P. Mitchell and C. Deser (1989): The influence of sea-surface temperature on surface wind in the Eastern Equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 1492–1499.CrossRefGoogle Scholar
  168. Walsh, E. J., M. L. Banner, C. W. Wright, D. C. Vandemark, B. Chapron, J. Jensen and S. Lee (2008): The Southern Ocean waves experiment. Part III: Sea surface slope statistics and near-nadir remote sensing. J. Phys. Oceanogr., 38, 670–685.CrossRefGoogle Scholar
  169. Wang, W. and P. Xie (2007): A multiplatform-merged (MPM) SST analysis. J. Climate, 20, 1662–1679.CrossRefGoogle Scholar
  170. Weng, F. and N. C. Grody (1994): Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J. Geophys. Res., 99, 25535–25551.CrossRefGoogle Scholar
  171. Wentz, F. J. (1975): A two-scale scattering model for foam-free sea microwave brightness temperature. J. Geophys. Res., 80, 3441–3446.CrossRefGoogle Scholar
  172. Wentz, F. J. (1983): A model function for ocean microwave brightness temperatures. J. Geophys. Res., 88, 1892–1908.CrossRefGoogle Scholar
  173. Wentz, F. J. (1992): Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 30, 960–972.CrossRefGoogle Scholar
  174. Wentz, F. J. (1997): A well calibrated ocean algorithm for Special Sensor Microwave/Imager. J. Geophys. Res., 102, 8704–8718.CrossRefGoogle Scholar
  175. Wentz, F. J. and T. Meissner (2000): Algorithm theoretical basis document (ATBD) version 2 AMSR ocean algorithm. RSS Tech. Proposal 121599A-1, Remote Sensing Systems, 59 pp. (available from
  176. Wentz, F. J. and T. Meissner (2007): Supplement 1 Algorithm theoretical basis document for AMSR-E ocean algorithms. RSS Tech. Proposal 051707, Remote Sensing Systems, Santa Rosa, CA, 6 pp. (available from Scholar
  177. Wentz, F. J. and R. W. Spencer (1998): SSM/I rain retrievals within an unified all-weather ocean algorithm. J. Atmos. Sci., 55, 1613–1627.CrossRefGoogle Scholar
  178. Wentz, F. J., C. L. Gentemann, D. Smith and D. Chelton (2000): Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850.CrossRefGoogle Scholar
  179. Wilheit, T. T. and A. T. C. Chang (1980): An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the Scanning Multichannel Microwave Radiometer (SMMR). Radio Sci., 15, 525–544.CrossRefGoogle Scholar
  180. Wilheit, T. T., A. T. C. Chang and A. S. Milman (1980): Atmospheric corrections to passive microwave observations of the ocean. Bound.-Layer Meteorol., 18, 65–77.CrossRefGoogle Scholar
  181. Wilheit, T. T., J. R. Graces, J. A. Gatlin, D. Han, B. M. Krupp, A. S. Milman and E. S. Chang (1984): Retrieval of ocean surface parameters from the Scanning Multifrequency Microwave Radiometer (SMMR) on the Nimbus-7 satellite. IEEE Trans. Geosci. Rem. Sens., GE-22, 133–143.CrossRefGoogle Scholar
  182. Wu, J. (1971): Slope and curvature distributions of wind-disturbed water surface. J. Opt. Soc. Amer., 61, 852–858.CrossRefGoogle Scholar
  183. Wu, J. (1979): Oceanic whitecaps and sea state. J. Phys. Oceanogr., 9, 1064–1068.CrossRefGoogle Scholar
  184. Wu, Q. and K. P. Bowman (2007): Multiyear satellite observations of the atmospheric response to Atlantic tropical instability waves. J. Geophys. Res., 112, doi:10.1029/2007JD008627.Google Scholar
  185. Wu, S. T. and A. K. Fung (1972): A noncoherent model for microwave emissions and backscattering from the sea surface. J. Geophys. Res., 77, 5917–5929.CrossRefGoogle Scholar
  186. Wu, X. and W. L. Smith (1997): Emissivity of rough sea surface for 8–13 μm: Modeling and verification. Appl. Opt., 36, 2609–2619.CrossRefGoogle Scholar
  187. Xie, S.-P. (2004): Satellite observations of cool ocean-atmosphere interaction. Bull. Amer. Meteorol. Soc., 85, 195–208.CrossRefGoogle Scholar
  188. Yueh, S. H. (1997): Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sens., 35, 1400–1418.CrossRefGoogle Scholar
  189. Yueh, S. H., W. J. Wilson, S. J. Dinardo and S. V. Hsiao (2006): Polarimetric microwave wind radiometer model function and retrieval testing for WindSat. IEEE Trans. Geosci. Remote Sens., 44, 584–596.CrossRefGoogle Scholar
  190. Zainuddin, M., H. Kiyofuji, K. Saitoh and S.-I. Saitoh (2006): Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep-Sea Res., 53, 419–431.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Center for Atmospheric and Oceanic Studies, Graduate School of ScienceTohoku UniversityAoba, SendaiJapan

Personalised recommendations