Advertisement

Journal of Oceanography

, Volume 65, Issue 6, pp 757–779 | Cite as

Seasonal variability in plankton food web structure and trophodynamics in the neritic area of Sagami Bay, Japan

  • Koichi Ara
  • Juro Hiromi
Original Articles

Abstract

The plankton food web structure and trophodynamics in the neritic area of Sagami Bay were investigated from January 2003 to December 2005, based on abundance, biomass, production rate and nutritional requirements of pico- (0.2–2 µm), nano- (2–20 µm), micro- (20–200 µm) and mesoplankton (>200 µm: mainly copepods CI-CVI) at 0–10 m depth. The average carbon biomass of the total plankton community was higher in spring and summer (1.452 and 1.466 g C m−2, respectively) than in winter and autumn (0.676 and 0.686 g C m−2, respectively). The average values of primary production and of production rate and food requirement of heterotrophic organisms were higher in summer than in other seasons. During the study period the biomass, production rate and food requirement of small heterotrophs (i.e. bacteria: BA; heterotrophic nanoflagellates: HNF; microzooplankton: MZ) were much higher than those of copepod secondary (CSP) and tertiary producers (CTP), indicating that the microbial food web was the main route of carbon flow from phytoplankton (PP) to CSP and CTP, rather than the grazing food chain. In particular, during summer and autumn the biomass of pico- and nano-size PP plus BA was greater than that of micro-size PP, suggesting the high prevalence of the microbial food web (pico-/nanophytoplankton/BA-HNF/MZ-copepods). During winter and spring, the biomass of micro-size PP was greater than that of pico- and nano-size PP plus BA, suggesting that the indirect route (microphytoplankton-MZ-copepods) probably prevailed, while the microbial food web might be important.

Keywords

Plankton food web structure trophodynamics carbon flow transfer efficiency Sagami Bay, Japan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anraku, M. and M. Omori (1964): Preliminary survey of the relationship between the feeding habit and the structure of the mouthparts of marine copepods. Limnol. Oceanogr., 8, 116–126.Google Scholar
  2. Ara, K. and J. Hiromi (2007): Temporal variability in primary and copepod production in Sagami Bay, Japan. J. Plankton Res., 29(Suppl. 1), 185–196.Google Scholar
  3. Ara, K. and J. Hiromi (2008): Temporal variability and characterization of physicochemical properties in the neritic area of Sagami Bay, Japan. J. Oceanogr., 64, 195–210.CrossRefGoogle Scholar
  4. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Rell and F. Thingstad (1983): The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10, 257–263.CrossRefGoogle Scholar
  5. Bird, D. F. and J. Kalff (1984): Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Can. J. Fish. Aquat. Sci., 41, 1015–1023.CrossRefGoogle Scholar
  6. Børsheim, K. Y. and G. Bratbak (1987): Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser., 36, 171–175.CrossRefGoogle Scholar
  7. Brocksen, R. W., G. E. Davis and C. E. Warren (1970): Analysis of trophic processes on the basis of density-dependent functions. p. 468–498. In Marine Food Chain, ed. by J. H. Steel, Oliver and Boyd, Edinburgh.Google Scholar
  8. Calbet, A. and M. R. Landry (2004): Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr., 49, 51–57.Google Scholar
  9. Caron, D. A., J. C. Goldman and M. R. Dennet (1986): Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellates. Appl. Environ. Microbiol., 52, 1340–1347.Google Scholar
  10. Caron, D. A., J. C. Goldman and T. Fenchel (1990): Protozoan respiration and metabolism. p. 307–322. In Ecology of Marine Protozoa, ed. by G. M. Capriulo, Oxford University Press, New York.Google Scholar
  11. Cho, B. C. and F. Azam (1990): Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar. Ecol. Prog. Ser., 63, 253–259.CrossRefGoogle Scholar
  12. Cole, J. J., S. Findlay and M. L. Pace (1988): Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser., 43, 1–10.CrossRefGoogle Scholar
  13. Cushing, D. H. (1989): A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plankton Res., 11, 1–13.CrossRefGoogle Scholar
  14. Epstein, S. S. and M. P. Shiaris (1992): Size-selective grazing of coastal bacterioplankton by natural assemblages of pigmented flagellates, colorless flagellates, and ciliates. Microb. Ecol., 23, 211–225.CrossRefGoogle Scholar
  15. Fenchel, T. and P. R. Jonsson (1988): The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichida). Mar. Ecol. Prog. Ser., 48, 1–15.CrossRefGoogle Scholar
  16. Fukami, K., N. Murata, Y. Morio and T. Nishijima (1996): Distribution of heterotrophic nanoflagellates and their importance as the bacterial consumer in a eutrophic coastal water. J. Oceanogr., 52, 399–407.CrossRefGoogle Scholar
  17. Gnaiger, E. (1983): Calculation of energetic and biochemical equivalents of respiratory oxygen consumption. p. 337–347. In Polarographic Oxygen Sensors, ed. by E. Gnaiger and H. Horstner, Springer-Verlag, Berlin.Google Scholar
  18. Godhantaraman, N. and S. Uye (2001): Geographical variations in abundance, biomass and trophodynamic role of microzooplankton across an inshore-offshore gradient in the Inland Sea of Japan and adjacent Pacific Ocean. Plankton Biol. Ecol., 48, 19–27.Google Scholar
  19. Hama, T., T. Miyazaki, Y. Ogawa, T. Iwakuma, M. Takahashi, A. Otsuki and S. Ichimura (1983): Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar. Biol., 73, 31–36.CrossRefGoogle Scholar
  20. Hamasaki, K., F. Satoh, T. Kikuchi, T. Toda and S. Taguchi (1999): Biomass and production of cyanobacteria in a coastal water of Sagami Bay, Japan. J. Plankton Res., 21, 1583–1591.CrossRefGoogle Scholar
  21. Hansen, H. P. and F. Koroleff (1999): Determination of nutrients. p. 159–228. In Methods of Seawater Analysis, 3rd ed., ed. by K. Grasshoff, K. Kremling and M. Ehrhardt, Wiely-VCH, Weinheim.Google Scholar
  22. Hansen, P. J., P. K. Bjørnsen and B. W. Hansen (1997): Zooplankton grazing and growth: scaling within the 22,000-µm body size range. Limnol. Oceanogr., 42, 687–704.Google Scholar
  23. Hashimoto, S. and T. Saino (2004): Measurement and problem of primary production in the ocean. Oceanogr. Japan, 13, 366–370 (in Japanese with English abstract).Google Scholar
  24. Hirota, R. (1981): Dry weight and chemical composition of the important zooplankton in the Setonaikai (Inland Sea of Japan). Bull. Plankton Soc. Japan, 28, 19–24 (in Japanese with English abstract).Google Scholar
  25. Hirst, A. G. and A. J. Bunker (2003): Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol. Oceanogr., 48, 1988–2010.CrossRefGoogle Scholar
  26. Hirst, A. G. and R. S. Lampitt (1998): Towards a global model of in situ weight-specific growth in marine planktonic copepods. Mar. Biol., 132, 247–257.CrossRefGoogle Scholar
  27. Hirst, A. G., J. C. Roff and R. S. Lampitt (2003): A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Adv. Mar. Biol., 44, 1–142.CrossRefGoogle Scholar
  28. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes and J. D. H. Strickland (1965): Fluorometric determination of chlorophyll. J. Cons. perm. int. Explor. Mer., 30, 3–15.Google Scholar
  29. Ikeda, T. (1985): Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol., 85, 1–11.CrossRefGoogle Scholar
  30. Ikeda, T. and S. Motoda (1978): Estimated zooplankton production and their ammonia excretion in the Kuroshio and adjacent seas. Fish. Bull., 76, 357–366.Google Scholar
  31. Imai, I. (1984): Size distribution and biomass of bacteria in Suō-Nada, western Seto Inland Sea. Bull. Nansei Reg. Fish. Res. Lab., 17, 183–196 (in Japanese with English abstract).Google Scholar
  32. Imai, I. and K. Itoh (1984): Distribution of heterotrophic microflagellates in Suō-Nada, western Seto Inland Sea, in May 1983. Bull. Nansei Reg. Fish. Res. Lab., 17, 219–233 (in Japanese with English abstract).Google Scholar
  33. Imai, I. and M. Yamaguchi (1996): Seasonal fluctuations in abundance and production of bacteria, and quantitative relation with heterotrophic microflagellates in northern Hiroshima Bay, Seto Inland Sea. Bull. Nansei Natl. Fish. Res. Lab., 29, 75–86 (in Japanese with English abstract).Google Scholar
  34. Imai, I. and M. Yamaguchi (1997): Abundance and productivity of bacteria in Osaka Bay, eastern Seto Inland Sea, Japan. Bull. Nansei Natl. Fish. Res. Lab., 30, 173–181 (in Japanese with English abstract).Google Scholar
  35. Itoh, K. (1970): A consideration on feeding habits of plank-tonic copepods in relation to the structure of their oral parts. Bull. Plankton Soc. Japan, 17, 1–10 (in Japanese with English abstract).Google Scholar
  36. Iwata, S. and M. Matsuyama (1989): Surface circulation in Sagami Bay: the response to variations of the Kuroshio axis. J. Oceanogr. Soc. Japan, 45, 310–320.CrossRefGoogle Scholar
  37. Kawabe, M. and M. Yoneno (1987): Water and flow variations in Sagami Bay under the influence of the Kuroshio. J. Oceanogr. Soc. Japan, 41, 307–326.CrossRefGoogle Scholar
  38. Kobata, T. (2003): Sagami Bay, Wonder of the Sea—Topics on Food, Nature and Fishery. Yumekoubou, Hadano, 331 pp. (in Japanese).Google Scholar
  39. Koblentz-Mishke, O. J., V. V. Volkovisnky and J. G. Kabanova (1970): Plankton primary production of the world ocean. p. 183–193. In Scientific Exploration of the South Pacific, National Academic Sciences, Washington, D.C.Google Scholar
  40. Koga, F. (1986): The occurrence and production of zooplankton in Suo-nada, western Seto Inland Sea. Bull. Nansei Reg. Fish. Res. Lab., 20, 91–113 (in Japanese with English abstract).Google Scholar
  41. Koga, F. (1987): The occurrence properties, biomass and production of zooplankton in Osaka Bay, eastern Seto Inland Sea. Bull. Seikai Reg. Fish. Res. Lab., 64, 47–66 (in Japanese with English abstract).Google Scholar
  42. Kogure, K. and I. Koike (1987): Particle counter determination of bacterial biomass in sea water. Appl. Environ. Microbiol., 53, 274–277.Google Scholar
  43. Kudo, Y. and Y. Yamaguchi (2000): Primary productivity in Sagami Bay. Cruise Reports, Tokyo University of Fisheries, 9, 161–164 (in Japanese).Google Scholar
  44. Landry, M. R. (1981): Switching between herbivory and carnivory by the planktonic marine copepod Calanus pacificus. Mar. Biol., 65, 77–82.CrossRefGoogle Scholar
  45. Legendre, L. and F. Rassoulzadegan (1995): Plankton and nutrient dynamics in marine waters. Ophelia, 41, 153–172.Google Scholar
  46. Longhurst, A., S. Sathyendranath, T. Platt and C. Caverhill (1995): An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res., 17, 1245–1271.CrossRefGoogle Scholar
  47. Lonsdale, D. J., D. R. Heinle and C. Siegfried (1979): Carnivorous feeding behavior of the adult calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol., 36, 235–248.CrossRefGoogle Scholar
  48. Machida, M., M. Fujitomi, K. Hasegawa, T. Kudo, M. Kai, T. Kobayashi and T. Uede (1999): Red tide of Ceratium furca along the Pacific coast of central Japan in 1997. Nippon Suisan Gakkaishi, 65, 755–756 (in Japanese).Google Scholar
  49. Menden-Deur, S. and E. J. Lessard (2000): Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr., 45, 569–579.CrossRefGoogle Scholar
  50. Miyaguchi, H., T. Fujiki, T. Kikuchi, V. S. Kuwahara and T. Toda (2006): Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res., 28, 313–324.CrossRefGoogle Scholar
  51. Montagnes, D. J. S., J. A. Berges, P. J. Harrison and F. J. R. Taylor (1994): Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr., 39, 1044–1060.CrossRefGoogle Scholar
  52. Müller, H. and W. Geller (1993): Maximum growth rates of aquatic ciliated protozoa: the dependence on body size and temperature reconsidered. Arch. Hydrobiol., 126, 315–327.Google Scholar
  53. Naganuma, T. and S. Miura (1997): Abundance, production and viability of bacterioplankton in the Seto Inland Sea, Japan. J. Oceanogr., 53, 435–442.Google Scholar
  54. Nakamura, Y. and A. Hirata (2006): Plankton community structure and trophic interactions in a shallow and eutrophic estuarine system, Ariake Sound, Japan. Aquat. Microb. Ecol., 44, 45–57.CrossRefGoogle Scholar
  55. Nakamura, Y., K. Fukami, S. Sasaki and J. Hiromi (1994): Population dynamics of bacteria and heterotrophic nanoflagellates following the summer diatom bloom in the Seto Inland Sea. Bull. Plankton Soc. Japan, 41, 1–8.Google Scholar
  56. Nakata, K. and T. Doi (2006): Estimation of primary production in the ocean using a physical-biological coupled ocean carbon cycle model. Environ. Model. Software, 21, 204–228.CrossRefGoogle Scholar
  57. Noda, Y. and S. Ichimura (1967): Primary production in Sagami Bay in the summer of 1964. Inform. Bull. Plankton Soc. Japan, Commemor. No. Dr. Y. Matsue’s 60th Birthday, 183–186 (in Japanese with English abstract).Google Scholar
  58. Ogura, N. (1993): Tokyo Bay-Its Environmental Changes. Kouseisha Kouseikaku, Tokyo, 193 pp. (in Japanese).Google Scholar
  59. Okutsu, T. (2008): Seasonal succession of plankton food web structure and trophodynamics in the neritic area of Sagami Bay, Japan. M.Sc. Dissertation, Nihon University, Fujisawa, 80 pp.Google Scholar
  60. Omori, M. and T. Ikeda (1984): Methods in Zooplankton Ecology. A Wiley-Interscience Publication, New York, 332 pp.Google Scholar
  61. Otsuka, S. and S. Nishida (1997): Reconsideration on feeding habits of marine pelagic copepods (Crustacea). Oceanogar. Japan, 6, 299–320 (in Japanese with English abstract).Google Scholar
  62. Parsons, T. R., Y. Maita and C. M. Lalli (1984a): A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, 173 pp.Google Scholar
  63. Parsons, T. R., M. Takahashi and B. Hargrave (1984b): Biological Oceanographic Processes. 3rd ed., Pergamon Press, Oxford, 329 pp.Google Scholar
  64. Payne, W. J. (1970): Energy yields and growth of heterotrophs. Ann. Rev. Microbiol., 24, 17–52.CrossRefGoogle Scholar
  65. Pomeroy, L. R. and W. J. Wiebe (1993): Energy sources for microbial food webs. Mar. Microb. Food Webs, 7, 101–118.Google Scholar
  66. Putt, M. and D. K. Stoecker (1989): An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr., 34, 1097–1103.CrossRefGoogle Scholar
  67. Rassoulzadegan, F., M. Laval-Peuto and R. W. Sheldon (1988): Partitioning of the food ration of marine ciliates between pico- and nano-plankton. Hydrobiologia, 159, 75–88.Google Scholar
  68. Raymont, J. E. G. (1984): Plankton and Productivity in the Ocean. Volume 2 Zooplankton. Pergamon Diss Press, Oxford, 824 pp.Google Scholar
  69. Ryther, J. H. (1969): Photosynthesis and fish production in the sea. Science, 166, 72–76.CrossRefGoogle Scholar
  70. Saitou, K. (1992): Year to year variations in water quality in the coastal areas in Sagami Bay. Bull. Japan. Soc. Fish. Oceanogr., 56, 328–334 (in Japanese).Google Scholar
  71. Sanders, R. W., D. A. Caron and U.-G. Berninger (1992): Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser., 86, 1–14.CrossRefGoogle Scholar
  72. Sherr, B. F., E. B. Sherr and F. Rassoulzadegan (1988): Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl. Environ. Microbiol., 54, 1091–1095.Google Scholar
  73. Sherr, B. F., E. B. Sherr and C. Pedrós-Alió (1989): Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar. Ecol. Prog. Ser., 54, 209–219.CrossRefGoogle Scholar
  74. Shimode, S. and Y. Shirayama (2004): Diel changes in vertical distribution of copepods community in Tanabe Bay, Japan. J. Mar. Biol. Ass. U.K., 84, 607–615.CrossRefGoogle Scholar
  75. Shimura, S. and S. Ichimura (1972): Primary productivity in coastal water adjacent to the Kuroshio off Shimoda. J. Oceanogr. Soc. Japan, 28, 8–17.CrossRefGoogle Scholar
  76. Shinada, A., T. Ikeda and S. Ban (2001): Seasonal dynamics of planktonic food chain in the Oyashio region, western subarctic Pacific. J. Plankton Res., 23, 1237–1247.CrossRefGoogle Scholar
  77. Shinada, A., S. Ban and T. Ikeda (2003): Seasonal changes in nano/micro-zooplankton herbivory and heterotrophic nanoflagellates bacterivory off Cape Esan, southern Hokkaido, Japan. J. Oceanogr., 59, 609–618.CrossRefGoogle Scholar
  78. Shinada, A., S. Ban, Y. Yamada and T. Ikeda (2005): Seasonal variations of plankton food web structure in the coastal water off Usujiri southwestern Hokkaido, Japan. J. Oceanogr., 61, 645–654.CrossRefGoogle Scholar
  79. Shinada, A., S. Ban and T. Ikeda (2008): Seasonal changes in the planktonic food web off Cape Esan, southern Hokkaido, Japan. Plankton Benthos Res., 3, 18–26.CrossRefGoogle Scholar
  80. Simon, M., B. C. Cho and F. Azam (1992): Significance of bacterial biomass in lakes and the ocean: comparison to phytoplankton biomass and biogeochemical implications. Mar. Ecol. Prog. Ser., 86, 103–110.CrossRefGoogle Scholar
  81. Sommer, U., H. Stibor, A. Katechakis, F. Sommer and T. Hansen (2002): Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production:primary production. Hydrobiologia, 484, 11–20.CrossRefGoogle Scholar
  82. Tada, K., K. Monaka, M. Morishita and T. Hashimoto (1998): Standing stocks and production rates of phytoplankton and abundance of bacteria in the Seto Inland Sea, Japan. J. Oceanogr., 54, 285–295.CrossRefGoogle Scholar
  83. Tada, K., M. Morishita, K. Hamada, S. Montani and M. Yamada (2001): Standing stock and production rate of phytoplankton and a red tide outbreak in a heavily eutrophic embayment, Dokai Bay, Japan. Mar. Pollut. Bull., 42, 1177–1186.CrossRefGoogle Scholar
  84. Tanaka, K. (1993): A condition of water pollution in Sagami Bay and inflowing rivers. Bull. Japan. Soc. Fish. Oceanogr., 57, 249–255 (in Japanese).Google Scholar
  85. Tanaka, T. and M. Sano (1980): Dynamic aspects of primary production by phytoplankton in eutrophic Mikawa Bay, Japan. Bull. Plankton Soc. Japan, 27, 75–85 (in Japanese with English abstract).Google Scholar
  86. Tanaka, T. and A. Taniguchi (1999): Predatory-prey eddy in heterotrophic nanoflagellate-bacteria relationships in a bay on the northeastern Pacific coast of Japan. Mar. Ecol. Prog. Ser., 179, 123–134.CrossRefGoogle Scholar
  87. Tanaka, T., N. Fujita and A. Taniguchi (1997): Predatory-prey eddy in heterotrophic nanoflagellate-bacteria relationships in a coastal marine environment: a new scheme for predator-prey associations. Aquat. Microb. Ecol., 13, 249–256.CrossRefGoogle Scholar
  88. Ueda, H. (1987): Small-scale ontogenetic and diel vertical distributions of neritic copepods in Maizuru Bay, Japan. Mar. Ecol. Prog. Ser., 35, 65–73.CrossRefGoogle Scholar
  89. Uye, S. (1982): Length-weight relationship of important zooplankton from the Inland Sea of Japan. J. Oceanogr. Soc. Japan, 38, 149–158.CrossRefGoogle Scholar
  90. Uye, S. and D. Liang (1998): Copepods attain high abundance, biomass and production in the absence of large predators but suffer cannibalistic loss. J. Mar. Syst., 15, 495–501.CrossRefGoogle Scholar
  91. Uye, S. and T. Shimazu (1997): Geographical and seasonal variations in abundance, biomass and estimated production rates of meso- and macrozooplankton in the Inland Sea of Japan. J. Oceanogr., 53, 529–538.Google Scholar
  92. Uye, S., H. Kuwata and T. Endo (1987): Standing stocks and production rates of phytoplankton and planktonic copepods in the Inland Sea of Japan. J. Oceanogr. Soc. Japan, 42, 421–434.CrossRefGoogle Scholar
  93. Uye, S., C. Huang and T. Onbe (1990): Ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus in the Inland Sea of Japan. Mar. Biol., 104, 389–396.CrossRefGoogle Scholar
  94. Uye, S., N. Nagano and H. Tamaki (1996): Geographical and seasonal variation in abundance, biomass and estimated production rates of microzooplankton in the Inland Sea of Japan. J. Oceanogr., 52, 689–703.CrossRefGoogle Scholar
  95. Uye, S., N. Nagano and T. Shimizu (1998): Biomass, production and trophic roles of micro- and net-zooplankton in Dokai Inlet, a heavily eutrophic inlet, in summer. Plankton Biol. Ecol., 45, 171–182.Google Scholar
  96. Uye, S., N. Iwamoto, T. Ueda, H. Tamaki and K. Nakahira (1999): Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr., 8, 227–237.CrossRefGoogle Scholar
  97. Uye, S., N. Nagano and T. Shimizu (2000): Abundance, biomass, production and trophic roles of micro- and net-zooplankton in Ise Bay, central Japan. J. Oceanogr., 56, 389–398.CrossRefGoogle Scholar
  98. Vargas, C. A., R. A. Martínez, L. A. Cuevas, M. A. Pavez, C. Cartes, H. E. González, R. Escribano and G. Daneri (2007): The relative importance of microbial and classical food webs in a highly productive coastal upwelling. Limnol. Oceanogr., 52, 1495–1510.Google Scholar
  99. Verity, P. G. (1991): Measurement and simulation of prey uptake by marine planktonic ciliates fed plastidic and aplastidic nanoplankton. Limnol. Oceanogr., 36, 729–750.CrossRefGoogle Scholar
  100. Verity, P. G. and C. Langdon (1984): Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res., 6, 859–868.CrossRefGoogle Scholar
  101. Verity, P. G., C. Y. Robertoson, C. R. Tronzo, M. G. Andrews, J. R. Nelson and M. E. Sierack (1992): Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr., 37, 1434–1446.CrossRefGoogle Scholar
  102. Yamada, Y. (1997): The strange color of sea occurred in Tokyo Bay and Sagami Bay, May 1996. Bull. Kanagawa Pref. Fish. Res. Inst., 2, 65–75 (in Japanese with English abstract).Google Scholar
  103. Yamada, Y. and S. Iwata (1992): Recent trend of marine environment in Sagami Bay. Bull. Japan. Soc. Fish. Oceanogr., 56, 323–327 (in Japanese).Google Scholar
  104. Yamada, Y. and S. Matsushita (2005): Environmental properties in the coastal area of Sagami Bay. Bull. Japan. Soc. Fish. Oceanogr., 69, 208–212 (in Japanese).Google Scholar
  105. Yamada, Y. and S. Matsushita (2006): Estimation of pollution loads of nitrogen, phosphorus and COD to Sagami Bay by using water quality data of the influent rivers. Bull. Kanagawa Pref. Fish. Tech. Center, 1, 43–49 (in Japanese).Google Scholar
  106. Yamaguchi, M. and I. Imai (1996): Size fractioned phytoplankton biomass and primary productivity in Osaka Bay, eastern Seto Inland Sea, Japan. Bull. Nansei Natl. Fish. Res. Inst., 29, 59–73.Google Scholar
  107. Yamaguchi, Y., H. Satoh and Y. Aruga (1991): Seasonal changes of organic carbon and nitrogen produced by phytoplankton in the estuary of River Tamagawa. Mar. Pollut. Bull., 23, 723–725.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Marine Science and Resources, College of Bioresource SciencesNihon UniversityKameino, Fujisawa, KanagawaJapan

Personalised recommendations